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1. INTRODUCTION 

The problem of system identification has been studied intensively 

and has become one of the most active fields in engineering research. 

Some investigators have obtained theoretical results on parameter identifi-

ability, convergence properties of parameter estimates [1,16,18,19], and 

regions of parameter identifiability [?]. There are also investigators 

working on developing computational algorithms for identifying certain 

control system parameters, for example, the stability and control deriva­

tives of an aircraft from actual flight test data [17]. 

There are two main steps in solving the system identification 

problem: (1) Determine if the system parameters are identifiable, and 

(2) if the parameters are identifiable, work out an algorithm for esti­

mating the parameterso To answer (1), we have to establish the definition 

of identifiability first. The most significant recent work on parameter 

X.  ̂11 L. a. X J. UiV ̂  J. ̂  C. J L. l&L.. W 1. V. O V./L 1 M O W .i.  ̂kJ b. A. C* i. H  ̂A. L. U. J-L I. k. LA*-. 

system are Tse [18] and Tse and Anton [19]. There are a number of 

algorithms that have been proposed for solving (2). 

Generally, if the system parameters are identifiable, they are only 

locally identifiable, i.e., we must have a sufficiently good initial 

estimate of the parameters such that the iterative estimation sequence 

will converge to the true parameters. Herget [7] provided a procedure 

for computing explicit regions in the parameter space in which the Gauss-

Newton method will converge to a unique solution. The systems considered 

by him were deterministic. 
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The definition of parameter identifiability when there are stochastic 

disturbances present has been given by Tse and Anton [19]. They said 

tlie parameters are identifiable if there exists a sequence of estimates 

which is consistent in probability. They also established the necessary 

and sufficient conditions for the unknown parameters to be identifiable 

under some uniformity assumptions on the conditional density parametrized 

by the unknown parameters. Tse [18] also gave the definition of local 

parameter identifiability and proved that the positive definiteness of 

the average information matrix implies local parameter identifiability. 

The definition of local parameter identifiability is that there exists 

an open region containing the vector of unknown parameters as an 

interior point and there exists a local estimation sequence in the 

closure of the region which is consistent in probability. Staley and 

Yue [16] established a similar concept on stochastic parameter identi­

fiability. They stated that the parameters are identifiable if every 

asymptotically efficient estimator converges to the true parameters in 

mean square (which is stronger than convergence in probability.) 

Wald [20,21] considered the consistency and asymptotic properties of 

the maximum likelihood estimation sequence. He showed that under certain 

restrictions on the joint probability distribution of the observations, 

the maximum likelihood equation has at least one set of roots which is 

a consistent estimate of the unknown parameters. He also showed that 

any root of the maximum likelihood equation which is a consistent 

estimate of the parameters is asymptotically efficient. 
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Based mainly on Wald-Kprdall-Âstrbm theory, Aoki and Yue [l] 

examined the asymptotic properties of the maximum likelihood estimates 

of unknown parameters of a class of linear, stable, constant, discrete-

time dynamic systems form where plant noise and observation noise are 

present. The systems considered by them were restricted to have certain 

cononical structure and were single-input and single-output. 

For the identification of linear dynamical systems, Glover and 

Willems [6] established the concept of parametrization and developed 

sufficient conditions for local and global identifiability from the 

transfer function. Bellman and Astrc5m [2] also provided an algorithm-

oriented least-square identifiability. It can be shown that for single-

input, zero state systems, local least-square identifiability is 

equivalent to local transfer-function identifiability under some 

assumptions on the least square criterion. The remaining second step 

of the system identification is to identify the system parameter exactly 

from input-output sequences for deterministic systems or to construct a 

consistent estimation sequence by using the constrained maximum likeli­

hood method for stochastic systems» In both cases, it becomes an 

optimization problem, i.e., we first set a performance criterion which 

is a function of the unknown parameters and then find best estimates 

such that the cost function will reach its minimum. 

In general, the cost function and its derivatives are nonlinear 

and an iterative procedure must be used to find the estimate. The best 

known method of solving a set of simultaneous nonlinear equations in 

which the increment in each iteration is computed as a linear combination 
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of the residuals is the Newton method. Kantorovich's Theorem [12] 

states certain sufficient conditions for the convergence of the Newton 

iteration sequence. However, these sufficient conditions are generally 

highly restrictive and are not easily examined. Moreover, in each 

iteration, we have to calculate the Hessian matrix of the cost function 

which includes the calculatior of a bilinear form. These are the two 

main disadvantages of using the Newton method from the point of view of 

practical computation. 

Later researchers have developed some modified versions of the 

Newton method. The most significant for the problem of interest here 

are by Ben-Israel [3] and Pereyra [13]. The main features of both of 

their algorithms are: first, we only need to compute the first order 

approximation of the Hessian matrix of the cost function; second, the 

sufficient conditions for the convergence of the iteration sequence are 

much easier to examine. Although Ben-Israel's algorithm and Pereyra's 

algorithm are the same if the first order approximation of the Hessian 

matrix of the cost function has full rank, Pereyra's sufficient con­

ditions are preferable again from the point of view of practical cal­

culation [13]. 

In the deterministic system identification problem, the solution 

for the cost function is the true parameter, i.e., the cost function 

will reach its global minimum, zero, if the output sequence generated 

by the estimate matches the measured output sequence. For a known system 

structure, i.e., a given parametrization, there may be more than one 

isolated point in the parameter space that will generate the same output 
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sequence for a given input sequence, i.e., the solution to the identifi­

cation criterion is generally not unique globally. Herget [7] provided 

a modified version of Pereyra's theorem and a computation procedure 

employing interval arithmetic to find explicitly the regions centered at 

each local solution in which the solution is unique and hence is locally 

identifiable. The other feature of his work is the use of bilinear 

operators to represent the linear system model. In doing so, the 

identification problem of linear systems is equivalent to the initial-

state observation problem of quadratic-in-the-state bilinear systems. 

This dissertation considers the parameter identification problem of 

general discrete-time, nonlinear, multiple-input/multiple-output dynamic 

systems with Gaussian-white distributed measurement errors. The knowledge 

of the system parametrization is assumed to be known. Concepts of local 

parameter identifiability and local constrained maximum likelihood 

parameter identifiability are established. A set of sufficient conditions 

tor the existence ot a region of parameter identifiabiiicy is proposed. 

A computation procedure employing interval arithmetic is derived for 

finding the regions of parameter identifiability. It is shcivn that if 

the vector of the true parameters is locally constrained maximum likeli­

hood identifiable, then with probability one, the vector of true parameters 

is a unique maximal point of the maximum likelihood function in the 

region of parameter identifiability and the constrained maximum likeli­

hood estimation sequence will converge to the true parameters. 

Chapter 2 is a review of Wald's theory [20,21] on the consistency of 

maximum likelihood estimates, the concepts of parameter identifiability 
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and local parameter identifiabillty established by Tse and Anton [19] and 

by Tse [18] and the application of these concepts to the system identi­

fication problems [16]. 

Chapter 3 is a survey of Bellman and Àstrom's [2] definition of 

least-square parameter identifiability, and Glover and Willem's [6] con­

cepts of system parametrization and identifiability from the transfer-

function. The author's contributions in this chapter are as follows. 

Sufficient condition for local least-square parameter identifiability is 

derived by employing the constant rank theorem [10], The Theorem of 

Glover and Willems is modified to provide a sufficient condition for local 

parameter identifiability of minimal dimensional liraar dynamic systems 

whose initial states are unknown, and a theorem is established to show 

that for single-input, zero-state linear systems, local least-square 

parameter identifiability is equivalent to local parameter identifiability 

from the transfer function if some constant rank assumptions on the impulse 

response matrix and its derivatives are satisfied. 

Chapter 4 is a survey of the Newton-Kantorovich theory [12] on the 

convergence of the Newton iteration method, Pereyra's theory [13] on 

solving nonlinear least-square problems, t^-norms, interval arithmetic [11], 

and Herget's results on regions of parameter identifiability [7] with 

application to the parameter identification problem of deterministic 

dynamic systems. A numerical example is provided by the author with the 

computer program listed in the Appendix. 
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Chapter 5 contains the principal new results of this dissertation. 

It considers the parameter identification problem of general discrete-

time multiple-input/multiple-output dynamic systems with Gaussian-white 

distributed measurement errors. It is mainly a modification of Herget's 

results [7] on the parameter identification problem of deterministic 

systems and a generalization of Aoki and Yue's result [l] on the parameter 

identification problem of single-input/single-output canonical-form 

linear dynamic systems with measurement noise. A numerical example is 

included to illustrate the computation procedure for finding the regions 

of CML parameter identifiability. 

Chapter 6 gives the conclusions of this dissertation and suggestions 

for further research. 
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2. MAXIMUM LIKELIHOOD ESTIMATION, PARAMETER 
IDENTIFIABILITY AND LOCAL PARAMETER IDENTIFIABILITY 

Relevant past investigations of maximum likelihood estimation 

parameter identifiability, and local parameter idcntifiability are 

discussed here. The first result is A. Wald's theory [20,21] on the 

asymptotic properties and the consistency of the maximum likelihood 

estimate of an unknown parameter of a discrete process. Then we will 

discuss Tse and Anton's [l9] definition on stochastic identifiability, 

the necessary and sufficient conditions for the unknown parameter to be 

identifiable under some uniformity assumptions on the conditional density 

parametrized by the unknown parameter, and Tse's [ig] definition of local 

identifiability. An identification problem of a class of linear, stable, 

constant, discrete-time, single-input/single-output dynamical systems 

discussed by Aoki and Yue [l] will also be presented. 

2.1 Preliminary Ccnccpts 

Definition 2.1 

Let X denote an arbitrary nonempty set. A family of subsets R of X 

is called a sigma field if 

(i) for every AeR, then also A sR where A^ is the complement of A 

(ii) if A^, A2, —, A ,— is a countable sequence of elements of R, 

then U-A eR, and 
n=l ̂  

(iii) 0eR where 0 denotes the empty set. 

(iv) Elements of R are called events. 



www.manaraa.com

9 

Definition 2.2 

A probability Pr. is a measure over a measurable space (X,R); that is, 

Pr„ is a real-valued function which assigns to every AeR a number Pr.(A) 

such that 

(i) Pr, (A) SO for every AeR 

(ii) Pr,(X) =1, and 

(iii) if [A^] is any countable union of disjoint events, then 
n=l 

CO CO 

Pr.( U A_) = S Pr.(A ) 
n=l n=l 

Definition 2.3 

Let X be a set, R be a sigma field and Pr, a probability measure 

defined on R, then the triplet (X,R,Pr.) is called a probability space. 

Definition 2.4 

A random variable x is a real-valued function whose domain is X and 

w h i c h  i s  R - m e a s u r a b l e ,  t h a t  i s ,  f o r  e v e r y  r e a l  n u m b e r  X ,  

iijue x|x(m) ̂A.}eR„ 

Definition 2.5 

Let x^jx^, ,x^, be a sequence of random variables, if there 

exists a random variable x((ju) such that 

lim X (m) =x(uij) for almost all o), we say that 
n -» CD 

lim x^ = X with probability one 
n 00 
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Definition 2.6 

Let —5X^5—J be a sequence of random variables, we say the 
00 

sequence converges to x in probability or convergea stochastically 
n=l 

to X if 

lim Pr.{|x^(m) - x(uu) | ̂e] = 0 
n~*oo 

is satisfied for every e > 0 

Definition 2.7 
00 

A sequence of random variables {xjj} is said to converge to x in 
n=l 

the mean square sense if 

2 
(i) E[ Ix^I }<œ for all n, 

(ii) e{1x|^}<oo, and if 

(iii) lim E{jx - x^l^} = 0 . 
n CO 

This is written 

l.i.m. x^ = X. 
n -* 00 

uefinicion 2.6 

If X is a random variable, its distribution function F is defined 
X 

F^(5) = Pr.[x for all §e (-œ,œ) 

Definition 2.9 

A distribution function F is said to be absolutely continuous if 

there exists a Borel measurable function p over (-#,#) such that 

F(§) = j p(t)dt 
"CO 

for all The function p is called a density of F. 
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Definition 2.10 

Let x^, — ,x^ be random variables, n^l. The joint distribution 

function of x^,—,x^, or the distribution function of the random vector 

x= (x^, > is defined to be 

where -oo<§^<co, l^i^n. 

Definition 2.11 

Let [x-^,\eA] be a family of random variables. They are said to be 

independent if for every positive integer n and every n distinct elements 

^l'"""'^n ' then 

for all ̂ sR^. 

If (§i) =Fx^.(?j) for all then {x^,ÀeA} are said to be 

independently and identically distributed. 

Let x^,x2,---,x^,— be a sequence of random variables with joint 

probability denstiy function p(a]^,X2, ,x^; 8), n = 1,2, , which is of 

known functional form but p(x^,—,x^; 0) depends upon an unknown vector 

of parameters 0 that may have any value in a set fi. This set will be 

called the parameter space. Thus we are confronted with a family of joint 

probability density functions denoted by [p(x^, ,x^; 0): OeO, n = l,2,—}. 

To each value of 0, 0sO, there corresponds one member of the family de­

noted by [p(x^, ,x^; Q): n = 1,2, } which is a sequence of joint prob­

ability density functions parametrized by 0. Let [p(x^, ,x^; 0^): 
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n = l,2, } be a member of the family and let 0Q be unknown, Q^eQ. An 

estimate of 8^ based on the observation sequence x^,x^,—x^, n = 1,2,— 

is a measurable function of , n = 1,2, , and is denoted by 

^n^-^n^^l'""'^n^ ' n=l,2,---. 

[®n^n-l then called an estimation sequence. 

Definition 2.12 

Any estimation sequence of 6Q«Q which converges stochastically 

to 0Q is called a consistent estimate for 6A.  

Lemma 2.1.a [The Strong Law of Large Numbers] [ 4] 

Let XpX2, ,x^, , be independent random variables such that 

2 E x^ = 0, E x^ <00. Let b^^ 0 converges up to +œ. 

™ 2 2 
If S Ex /b, <00 then 

k=l k k 

X. H 1- X 

Pr. [lim = 0} = 1. 
n -» œ bn 

Lemma 2*l.b 

Let XpX^, ,x^, be independent and identically distributed 

random variables. 

If E|x^ ( <co, then 

4- + X 

Pr.[lim — = E x-, } = 1 
n CO ^ 

The concepts introduced above can be found in references [4], [5l, and 

[ 9 ] .  
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2.2 The Consistency of Maximum Likelihood Estimates 

This section summarizes the theory given by Wald in [20,21], Let 

variables with joint probability density function p(z^,—,z^; 0), 

n = 1,2,— , parametrized by the unknown parameter GeCîCRP, where D, is the 

parameter space. Let ||*|| be a norm on RP. Let p(z; 9) denote the 

probability density function and F(z,@) denote the corresponding cumu­

lative distribution function of z^, i.e., F(z;G)=Pr.{z^^z]. 

The following assumptions are made. 

Assumption 1 

F(z; G) is either discrete or is absolutely continuous for all Gefi. 

For the next assumption, we introduce the following notation: for 

Gefl and p>0 let p(z; G,p) be 

[z be a sequence of independent, identically distributed random 

p(z; G,p) = sup p(z; 0') 

11̂  "̂ '11 

For any r>0, let i j;(x,r) be 

i (z,r) = sup p(z;0) 

Furthermore, let 

1 otherwise 

Similarly, let 

otherwise 
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Assumption 2 

For sufficiently small p and for sufficiently large r, 

J log p''(z;Q,p) dF(z;0Q)<o:> 

and 

j log $*(z,r) dF(z;0) <«= for all 0cQ 
-CO 

where 9q is the true parameter point. 

Assumption 3 

If lim 0. =9, then lim p(z;0.) =p(z;9) for all z except perhaps on a 
i œ i -» 00 ^ 

set whose probability measure is zero according to the probability dis­

tribution corresponding to 9^. 

Assumption 4 

If 0^/0q5 then F(z;9j^) ̂ F(z;9^) for at least one value of z. 

Assumption 5 

If lim (|9.|| =co, then lim p(z;0.) =0 for every z except perhaps on a 
i JO i -» 00 ^ 

fixed set whose probability measure is zero according to 0^. 

Assumption 6 

00 J I log p(z; Jq) 1 dF(z; 0g) < 

Assumption 7 

n is a closed subset of R^. 

Assumption 8 

p(z; 0, p) is a measurable function of z for ,080 and p>0. 
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Lemma 2.2 

If 9 ̂ 0„, then 
- -0 

E log p(z;9)<Elog p (z ; G^) (2.1) 

Lemma 2.3 

lim E log p(z; 0, p) =E log p(z; 0 ) (2.2) 

p - O  "  

Lemma 2.4 

lim E log iii(z,r) = -co (2.3) 
r œ 

By the above lemmas, we can prove the following theorems. 

Theorem 2.5 

Let WCQ be a closed subset of 0. If ̂  does not belong to W, then 

sup (z, ,2^; 0) 
0eW 

Pr.{lim = 0} = 1, (2.4) 

n-cn p(z., ,2^; 9„) 

Proof; By Lemma 2.4 we can choose r^ > 0 such that 

E log f(z,r^) <E log p(z;0) (2.5) 

Let be the subset of W such that 

llell^rg, GsW} 

For each 0eVJ^, we can choose a p^>0 such that 

E log p(z; 0, pg) <E log p(z; 9 ) (2.6) 
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The existence of is guaranteed by lemmas 2.1 and 2.2. The set is 

closed and bounded; hence it is compact. Thus there exists a finite number 

of points 6^5—in such that the union of the spheres with center 

k 
0^ and radious , i = 1, .U^S(0^,Pq _ )  cov e r s  W^. . 

We see that 

k 
0<. sup p(z^,z2,—,z^; 0) p(z^; e^, Pg ) ' • • p(z^; 0^^, Pg ) 

0e 1 i -i 

+ 'Kzn'V-

Thus we are going to show 

p(^i;ii' pei)'"p(zn; ii, P0i) 

n"* (X) 

and 

CO 

T.fV> -ic nnii-î Tol or# f- f" r> c h r»T.i 4 rxrr t-V» o t* 

Pr.[lim.Z [log p(z ; 0^, pg.) - log p(z ; 0^)] = -=] = 1 
n-+t»] J- J — 

i = l,---,k (2.9) 

and 

Pr.[li% g^[log *(2 ry)-log p(z.; G^)] = -=] ̂  1-
n-*of •' j 

f2.10^ 

But (2.9) and (2.10) follow immediately from (2.5), (2.6) and the strong 

law of large numbers. 

Theorem 2.6 

Let 9 (z,,—• ,z ) be a function of the observations such that 
—n 1 n 
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P(=l' '=n; 

\ 2:c>0 for all n and for all z,,— ,z (2.11) 
pCzp—,Zn' V 

Then 

Pr. [lim 6 = 0 } = 1. 

n'.-" 

» " 
Proof: Letdenote the set of limit points of ' then it suffices 

to show that for any e >0, 

sup{)|â - 0^11 : &^e with probability one (2.12) 

Suppose that there exists a Ge such that ||0 - 9^11 >e , then 

p(z^,—,z^; 0) s p(z^,—,2^; 
! 

for infinitely many n. But this implies 

sup 

|9 - 0q|I ̂  G 

sup p(z,,—,z ;0) 

P (Zi , ? z_ ; 6n") 

for infinitely many n by (2.11). 

By Theorem 2.5, (2.13) is an event with probability zero, thus (2.12) 

holds with probability one. We recall that the maximum likelihood esti­

mate â is obtained by 
n •' 

p(z^,---,z^; e^) = Max p(2^,--~,z^; 0) for all n (2.14) 
0eQ 

A 
If 0^ exists, then 

p(z. ,---,z ; J ) 
—-, r—r— S 1 for all n and for all x , ,x . 
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By Theorem 2,6, the maximum likelihood estimate is consistent. 

2.3 Parameter Identiflability and 
Local Parameter Identiflability 

This section summarizes the work by Tse and Anton in [l9] and by 

Tse in [l8]. 
œ 

Let {z } be a sequence of observation statistics with joint 
n n=l 

probability density function p(z^, , parametrized 

by the unknown parameter GsO c, where is the parameter space which is 

a compact subset of R^. Let j|*|j be a norm on R^. The true parameter 0^ 

is known to lie in the interior of Q. The parameter identification 

problem is to estimate the true parameter 6^ based on the observation 

œ 

sequence [z ] 
" n=l 

Definition 2.13 

The parameter 9^ is said to be identifiable if there exists a sequence 

A 
of estimates [0^] which is consistent in probability, i.e., for any 5, 

e arbitrarily small, there exists an N(6,e) such that for n>N(ô,e) 

(2.15) 

For brevity, we let 

p(Z^;9)= p(z^, —,z^K0), (2.16) 

and 

P^^nl^n-l'^^" for n = 1,2,-=- (2.17) 

For 0en and p > 0, let 
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p(Zn'Pl^n-i; = sup p(z^lVl'-') (2-18) 

lle-e II 

The following assumptions are made. 

Assumption 1 

p(Z^,€) is measurable in with respect to p(Z^; 6^) dZ^ and contin­

uous in 8eQ for Z^ almost everywhere, i.e., for e>0 and Qefi, there exists 

a 6(e) >0 such that for all 0'eQ with ll0-0'l|<6 we have |p(Z^; 0) -

p(Z ;̂0')j<e for Z^ almost everywhere. 

Assumption 2 

In P^^n'pl Vl'-^ V some p>0 

and 0eQ (2.19) 

and 

for all n =1,2, 

Assumption 3 

For all 0en and some p.>0, 
— '̂ 0 

n 2 
Var.[^^Z^ log p(z^,p|z^_2; e)]= 0(n ) (2.21) 

O 
for all O^P^Pq, where 0(n ) is such that 

/V / - 2\ 
lim = 0 
n-'co n 

Assumption 4 

Let the set B^(0) be 

B̂ (8) - [Ẑ : P(Ẑ ; 8) =0] 



www.manaraa.com

20 

then for all 9^,6^60, we have 

for n = 1,2,— (2.22) 

Since the only information about 6q is the observation sequence statistics 

CO 

with their joint density function p(Z^;0), n=l,2, , if there 

are two points G^jG^eQ, ^02» such that 

p(Z^;9l)=p(Z^;82) (2.23) 

or 

P^^niVl'-l^ " P^^niVl'-2^ for all n (2.24) 

we are not able to distinguish 9^ and G^ in Q. 

Definition 2.14 

Two parameters G^jG^eQ, 9^ #9^ are said to be unresolvable if the 

equality 

" I 7 • A \ 17 • Û \ F 0 T i .̂ 1 y f \'-r\ \ ̂ n- i '—oy — / 

holds with probability one for all except a finite number of integers 

n>0, i.e., if (2.25) holds with respect to the measure p(Z^; 0^) dZ^ as 

well as p(Z^; 0^) dZ^. 

Definition 2.15 

The set 0 is said to be identifiable if no two elements in 0 are 

unresolvable. 

By using the constrained maximum likelihood method, the identification 

problem is; find Ô^eQ as an estimate of 9^ such that 

n^~ "=1,2, (2.26) 
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Since Q is compact and hence is closed and bounded, and p(Z^; 9) is 

continuous in 0 by assumption 1, a solution to (2.26) exists and the 

A 
estimate sequence [O^] is a consistent estimate for 0^ if 9^ is unique. 

This follows from Theorem 2.6. However, if there are two points 6^,02®^' 

0^5^ 0^5 such that 

lim p(Z ; 0p = lim p(Z (2.27) 
n-*oo n-^co 

A 00 
then it is obvious thuit {9 } , will fail to converge„ 

n n=l 

Definition 2.16 

Two parameters said to be CML unresolvable if 

lim p(z^lz^_^; 9^) = lim p(z^|z^_^; 9^) (2.28) 
n -* œ n œ 

with probability one. 

Definition 2.17 

The set Q is ro be Cm_, ideiitifiable if no two elements in Q are 

CML unresolvableo 

The following theorem was given by Tse and Anton in [l.9. ]. 

Theorem 2.7 

If for all there exists an countably infinite set 

LCI^ (l"^ = the set of positive integers) such that 

with nonzero probability with respect to 0^ and 0^ uniformly in neL, then 

Q is CML identifiableo 
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The above concepts on parameter identiflability can be applied to 

the system identification problem. 

Consider a linear discrete-time system described by: 

X (k +1) = Fx (k) + Gu (k) 

_z(k) =Hx(k) +v(k) (2.29) 

where F is the (n X n) state transition matrix 

G is the (n X q) input matrix 

H is the (r X n) output matrix 

x(k) is the n-state vector 

z(k) is the r-output vector 

u(k) is the q-input vector 

v(k) is a Gaussian white noise with zero mean and convariance matrix Q. 

Let the initial state x(0) =Xq. The parameter 6^= {xq,Fq,Gq,Hq,Qq} is to 

be identified. We assume Q^sfiCR^ where Q is a compact subset of R^. 

Furthermore, we assume that 

(1) the system is stable for all SsQ, 

(2) the system is completely controllable, i.e., 

Ti" X 
rank[G,FG, ,F G] =n for all QeQ, and 

(3) the system is completely observable, i.e, 

rank[H^, (HF)^,—, = n for all GsO. 

The assumption of controllability and observability implies that the system 

is of minimal dimension and equivalent systems for (2.29) exist. The 

joint probability density function of the observation sequence [z(0), 

,_z (M)}, M = 0,l,2,---, is given by 
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M 
p(2(0),—,z(M);9) %Pv(k) -Hx(k); 0) 

, M T - ] 
= Const. exp{-^ Z [z(k) -Hx(k)] Q [z(k) -Hx(k)]] 

^k=0 (2.30) 

where x(k) is the solution to (2.29) for a given 0eQ. The CML estimation 

method is then to find 6 as an estimate of 0„ such that 
-n -0 

p(z(0) ,z(M) ; é ) = Max p (z (0) ,z (M) ; 0) 
0en 

M = 0,l,2,— (2.31) 

If there are 2' will both generate the same Hx(k) 

sequence when applied with a given input sequence, then 

. (z(k) - Hx(k) ; 0 ) = n P /^\(z(k) -Hx(k);8 ) 
k=0 v(k) -1 k=0 viKJ 

M = 0,l,2,— (2.32) 

for the same measurement noise distribution. Thus by definitions 2.14 and 

7.In. H, and w are botn iinresolvahl e and (~m7. iinresolvahlp. sinre «vsrpm 
' —1 —z 

(2.2 9) is minimal, the following theorem, which provides the sufficient 

condition for unresolvability, follows immediately. 

Theorem 2.8 

Let 0^ = [Xq^,F3^,Gj^,H^,Q|^] and 

—•y~ ̂ 02'^7''^2'^2'^2^' —1 '—2®^' —1^—2' 

0. and 9„ are both unresolvable and CML unresolvable if there exists a 
—1 —/ 

nonsingular, nonidentity matrix P such that 
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-1 

-1 
F^^PF^P 

G^ = PG2 

-10^^-20 

Ql =42 

Proof: Let the state vectors generated by 6^ and be (k) and 

respectively» Then x^(k) = (k) H^x^(k) =H^p'"^px2(k) =HgX2(k) for any 

input, and the two systems parametrized by 9^ and 9^ respectively are 

equivalent. 

Therefore 

M 

kSo'vCk)^® 

M 
= Const.'exp[--2j^i;Q[z(k) - HjX^(k) ^[z(k) -H]X^(k)]} 

= Const.-expl-i ̂S^[z_(k) - Hg^(k)]^Qg ^[z(k) -H^x^Ck)]} 

M 

"knofv(k)(-(k) 82), M = 0,1,2,— 

Hence 0^ and 0^ are both unresolvable and CML unresolvable. The above 

theorem is a modification of the one given by Tse and Anton in [l9]. 

To illustrate Theorem 2.8, we have the following example. Consider 

the system 

x(k+ 1) = 0O 1.0 
3 0 

x(k) + CP 0
 9 

4 _ 5J 

u(k) 

(2.34) 

_z(k) = [ 1 0 ] x(k) + v(k) 
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x(0) = 

2 .  

with 6 = [8^ @2 ®4 ^5] to be identified. 

By Theorem 2.8, the following equations are obtained 

03 1.0 

0 9% 

^11 ^12 

P P 
21 ^22 

03 1.0 

0 0, 

11 

21 

«5 

"11 

^21 ^22 

[1 0] = [1 0] 

I I I 

^11 ^12 

^21 ^'22 

[M f""!! hll 

^21 ^22 

and the solutions are 

P^l^l.O 

^12 = ̂  

^21 - 63 - G4 

"22 = 1-0 

93^*4 = 83 + 84 

=*1 

e; + Gi 
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Specifically, if we let 

9^ = [0.5j 0.1, 0.3, 0.7, l.O], then 

and 

and 

e^ = C0.5, -0.1, 0.7, 0.3, 1.0] 

1.0 0 

-0.4 1.0 

I.e., the following two systems 

' 0.3 l.o" 0 

x(k+ 1) = x(k) + 

_0 0.7 1.0 

_z(k) = [ 1 0 ] x(k) + v(k) 

J x(0) = [0.5 , 0.1] 

0.7 1.0 

X1 K -H I » = I 

u(k) 

[o 0.3 j [l.O J 

z(k) = [ 1 0 ] x(k) + v(k) 

x(0) = [0.5 , -0.1]^ 

(2.36) 

(2.37) 

are unresolved in any compact subset of R containing 6^ and Q^. 

If there is more than one vector of parameters in Çl that will generate 

the same observation sequence joint density function, the parameters are 

not globally identifiable. However, if there exist regions around each 

point and if there exists a local estimation sequence in each region, we 
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are still able to identify those parameters by some identification algor­

ithms of local variation type. The following concept is established by 

Tse in [18]. 

Definition 2.18 

The parameter 6qSQ is said to be locally identifiable if 

(i) there exists an open set such that is an interior point of 

Sq, and 

(ii) there exists a consistent estimate 

CO 

fê 1 1 in where S„ is the closure of S„. 
^n-'n=l 0 0 0 

We will call Sq the region of parameter identiflability. By imposing 

the same assumptions as the above on the joint density function of the 

observation sequence, Tse [18] has the following theorem. 

Theorem 2.9 

2 
If for all n = 1,2,—, there exists a X >0 such that 

a log p(z^|Zn_i;io) 
^ I ^ ^ 

> (2.38) 
p x p  

where E„ represents the expectation with respect to the density function 
% 

p(Z^; Oq)» Chen 0^ is locally identifiable. 

Another weaker sufficient condition for local identiflability was 

also established. Define 

T 
Ô log p, .(G) Ô log pu XG) 
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where 

P k j ( e ) - P ( z k , \ + 1 , — 8 )  ( 2 . 4 0 )  

Noting that 

^ (2.41) 

and 

2 . 5 0 6 SQ 
— o y •" 

a^iogp,^.® J s'i»sPi,i® 

We have 

j log p^ i(8) 

= - Z J. .(8) (2.42) 
i=k 

•^u ^®"i,A.i® (2-43) 

and 

n 

^l.n®o'-i?l-'i.ieo> (2-44) 

Theorem 2.10 

2 
If there exists a À >0 such that 

n 2 
lim .S J. .(6 ) = lim J, _(ej I (2.45) 

1,1 0 n-m 0 

then 8 is locally identifiable. 
-Q 
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Definition 2.19 

A subset S CR^ is said to be locally identifiable if all the elements P 

in S are locally identifiable. 

Theorem 2.11 

A sufficient condition for a subset S CR^ to be locally identifiable 

is that 

lira X^(9) >0 for all GeS (2.46) 

In the next section we will present a system identification example 

given by Aoki and Yue [1]. 

Aoki and Yue [1] examined the asymptotic properties of the constrained 

maximum likelihood estimate of the unknown parameters of a class of linear, 

stable, constant, discrete-time systems with observation and plant noise. 

ThA ciyBf-pm rnnqi lïprpfï hy rhpTn i s in r'ne romplprply nhspTva hi p fomnanxoTi 

form and is single-input and single-output, hence the system representa­

tion is unique. Therefore local identifiability will imply global identi-

fiability for the class of systems considered by them. It is 

obvious that global identifiability implies local identifiability. 

Consider the dynamic system represented by 

2.4 An Example of System Identification 

x(k+ 1) = Fx(k) + Gu(k) 

y(k) = Hx(k) (2.47) 

z(k) = ite(k) + v(k) 
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where F is an (n x n) matrix, G is an n-component vector, H = [10—O] is 

a (1X n) matrix, and v(k) is a sequence of independent and identically 

distributed random variables with zero mean and finite variance a^, i.e., 

v(k)~ N(0,a^), k = 0,l,2, —. F has the following completely controllable 

companion form: 

F = 

-a^ 10 • • • 0 

-a^ 0 1 0 . . 0 

. 0 -a 0 
n 

and G = [b^,b^,—,b^] 

The initial state_x(0) is an unknown n-vector. Our purpose is to 

identify 

T 
0 = — ,b^] , a 2n-vector, 

and the unknown initial state x(0) =Xq. 

The input sequence u(k), k = 0,l,2, is known and is assumed to be 

uniformly bounded. 

Suppose we take M observations. Define 

l^=[u(0), u(l),—, u(M-l)] 

Y^=[v(0), v(l),-

Y j ^ = [ y ( 0 ) ,  y ( l ) , -

Zj^=[z(0), 2(1),-

-, v(M- 1)] 

y(M- 1)]T 

-, z(M- 1)]^ (2.48) 
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Then 

where 

VM ' Vh + 

n 
A = I + Z a 
M MXM 1=1 i 

& 

^nxn 
= ( ) - (2.50) 

OM-n,n 

and S is the MXM shift matrix with element S. . = 6. .,. Another way to 

express the input-output relation of (2.47) is as follows: 

y = H e+E x(0) (2.51) 
-M -M~ M~ 

where 

iy f r\tr o t t  n  TL* * /-I-RT »-i t t  n  » N / O T O \ 
n  -  v o i  ,  - a  i . .  .  a u  . 0  u . ^  u , , /  
—M -"n —M' ""W —M —n 

which is an M X 2n matrix. 

We assume that the true parameter 0^ is an interior point of Q where 

2n 
n is a compact subset of R . Furthermore, we assume that the system 

(2.47) is stable for every 0eQ. By (2.47) and (2.49). the output sequence 

Z,^, can be expressed as; 

4 + (2-53) 

and the joint probability density function of is 
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?(%; = Const.'exp(2L||z^-A^ (2'54) 

2 a 

The constrained likelihood estimate of 0 and x., denoted by Ô and x 
-0 -M -OM 

respectively, are obtained by 

log P(Z sG.Xg) (2-55) 
" OM Gen,x eR ^ ^ 

-  "0 

For any 0eQ, Max log p(Z ; 0,is obtained by 
X eOR" ^ " 
"0 ^ ^ 

\ (2-56) 

Then Ô' is obtained by 
~"M 

Min|L2„-V'(V„ + '^Ï0H®>ll' 

and 

- ' ^ . C T ' / A N  / O C O \  a. — re ; v^ojo; 
-UM -UM "in 

The following theorems were given by Aoki and Yue in [l]. 

Theorem 2.12 

If the system (2.47) is completely controllable, and G is not a zero 

vector, then the constrained maximum likelihood estimate è converges to 

the true parameter ̂  with probability one if and only if 

1 -T 
lim V, U., „ U >0 
M" œ 

where 

R -M,2n -M,2n 

— 2 2n 
(Sj;„.S n„,-.s _u„) (2.59) 
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Theorem 2.13 

If the system (2.47) is completely controllable, and G is not a zero 

vector, then the constrained maximum likelihood estimate ê converges to 

the true parameter 0^ if and only if 

lim — H ,>0 for all GeO. 

We note that the positive definiteness of the two matrices in Theorem 12 

and 13 are sensitive to the input sequence U^; therefore, input synthesis 

is an important factor for the identifiability of the system parameters. 
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3o LOCAL LEAST-SQUARE PARAMETER IDENTIFIABILITY 
AND LOCAL PARAMETER IDENTIFIABILITY FROM THE 
TRANSFER FUNCTION OF LINEAR DYNAMIC SYSTEMS 

In this chapter we will discuss specifically the parameter 

identiflability of linear dynamic systems. We will establish the concept 

of parameter identifiability without considering the identification 

algorithm, the algorithm-oriented least-square identifiability [2], and 

the trans fer-function identifiability for linear dynamic systems [6]. 

Furthermore we will discuss the relation between the local least-square 

identifiability and the local transfer-function identifiability. 

3.1 Notation 

We will present specifically the manipulation of the bilinear 

operators in this section which is necessary for the approach later on. 

For $ (8) a real-valued function of 6eQCR^, i.e., ijtiQ-'R, if i|i(0) 

is differentiable with respect to GeQ, we define 

, [|M 1̂ ] 

wliert 

0 = [Q^,---,@p] . 

If (8) is an m-component vector-valued function of 0eQ, we define 
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i'(0) s 

31'^ (6) 

0 01 

â 01 

r #i(G) 1 
l a e j  ]  

a*i(G) 

TêT" 

34^(0) 

s 9^ 

and 

f(e) a 
^i(e) 

Ô 8 J o 8k 

i = Ij ,m 

j -1, JF 

k = 1, ,p 

which is an (m X p X p) bilinear operator [l4]. For A (9) an (mxp) matrix, 

A(G) =[A^j(9)], we define 

SAj^j (9) 
A'(e) = 

3 8, 

i = 1, ,m 
j = l,---,p 
k= 1,—,p 

which is an (m X p X p) bilinear operator, it a is an (mxp Xp) bilinear 

operator, then the product of B with a p-vector 9 is an (mxp) matrix 

whose i,j element is 

Moreover, B99 is a m-vector defined by 

B 99= (B9) 9 

We denote the permutation of B as B , where 

^ijk 
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B is said to be symmetric if 

B = B* 

T 
The transpose of B is denoted by B , where 

The product of a bilinear operator B with a (pX q) matrix is an (mxp Xq) 

bilinear whose i,j,k element is 

The product of a (q X m) matrix with an (mxpXp) bilinear operator is as 

(q Xp Xp) bilinear operator whose i,j,k element is 

m 

Given two matrices 

A = [a. j] , i,j = l,-—,n , and 

B = [b.j] , i,j = l,-",m , 

we form a new matrix G with elements c obtained by multiolvine each 
ij;kt 

element of A by each element of B in the following way: 

Here, the pair of integers (k,j) act as the first index, and the 

pair of integers (k;t) act as the second index, where 

i,k= 1,2, ,n, 

2,1 = 1,2, ,m. 
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The matrix C is called the Kronecker product [l5] of the matrices A and 

B and is denoted by 

C = A,(x)B 

For example, let A and B be second order matrices. Then their Kronecker 

product is a fourth order matrix, which can be written as 

"ll'll =11^12 *12^11 *12^12 

^11^21 *11^22 *12^21 ^^2^22 

*21^11 *21^12 *22^11 ^22^12 

*21^21 *21^22 *22^21 *22^21 

^11;11 Cll;12 Cll;21 ^11;22 

^12;11 ^12;12 ^12;21 ^12;22 

^21:12 ^21;21 ^21;22 

"22;11 =22;12 -22;21 '22;22 

For an (n x m) matrix A = [a^j], A is defined by 

*11 
*21 

"nl 

*12 

an2 
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3o2 Local Least-Square Parameter Identifiability 

A general continuous-time deterministic dynamic system is described 

by 

x(t) = \|;(x(t), u(t), t; e) 

l(t:) =§(x(t), u(t), t; 6) (3.1) 

where x(t) is the n-state vector, u(t) is the q-input vector, y(t) is the 

r-output vector, te[0,oo) = R*". \jf ; x X R*" xQ-'R^, and § : R^ X R^ X R X 0 R^. 

p 
GsficR is the unknovra parameter to be identified. If the system is dis­

crete-time, then it is described by 

x(k+1) = *li(x(k) , u(k), k; 6) 

l(k)=i(x(k), u(k), k; 9) (3.2) 

k = 0,1,2,---

We assume that 0 is a compact subset of R^ and the system is stable 

for all 0eQ. We must note here that 8 may stand for the system model 

coefficients only, e.g., the F, G, H matrices of the linear systems, or 

it may include the unknown initial state. To distinguish the above two 

cases, we have the following definitions. Let A denote the set of all 

admissible iupuLs, leL h(L;G) or h(k;G) uenotes the output generated by 

0 when applied with a ueA 

Definition 3.1.a 

Let 0 stand for the system model coefficients only, then for the 

continuous-time systems, 6^ #0^ are said to be unresolvable in 

n if 
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h(t;0^) =h(t;ep 

for ail xisR^, ueA, and teR . 
—0 — 

For the discrete-time systems, and are said to be unresolvable 

in n if 

h(k;e^) =h(k;Gp 

for all ueAj and kel^. 

Definition S.l.b 

If Q includes the unknown initial state x„, then for the continuous-
- -0 

time systems, said to be unresolvable in Q if 

h(t;G;^) =h(t;8^) 

for all jueA and teR^c 

For the discrete-time systems, G^ and are said to be unresolvable 

h(k;G^) =h(k;G^) 

"f" 
for all_ueA and kel . 

Definition 3.2 

A parameter G^sO is said to be locally identifiable if there exists 

an open sphere S(6q,P) with radius p>0 centered at G^ such that there is 

no other GeS(9„,p) flfi, G^9 which is unresolvable from G^. 
— ^0 0 —0 

The above definition is made independent of the method for recovering 

G^. However, Bellman and Astrom [2] established an algorithm-oriented 

definition which is called the least-square identifiability. Specifically, 
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they first set a least-square type criterion parametrized by the unknown 

parameters and sought the unique local (or global) minimum of the criterion. 

Parameter identiflability was then implied by the uniqueness of the 

minimum of the criterion. 

Consider the criterion given by 

T 2 
J^(G) = J ||h(t;Q) -2(t)|| dt, T>0 (3.3) 

for the continuous-time system, or 

Jj^(O) sjj^(k;e) -2(k)t|\ M = 0,1,— (3.4) 

for the discrete-time system. ||'j| denotes the norm, ̂ (t) and ̂ (k) are 

the measured outputs of the continuous-time systems and the discrete-

time systems, respectively. The following definition was given by 

Bellman and Astrom in [2]. 

Definition 3.3 

Let 0Q be the true parameter of a control system parametrized by the 

unknovm parameter 9. Then 9^ is said to be locally least-square identi­

fiable if the criterion J^(9) or J^(9) has a local minimum at 0 = 9^. If 

the minimum is global, is said to be globally identifiable. 

To establish the sufficient conditions for to be (locally) identifiable; 

we proceed as follows. We consider the discrete-time system. To find 

the local minimum of J^^9), we take the derivative of J^(9) with respect 

to 9 if J^(9) is a continuously differentiable function of 9. Since J^(9) 

is a scalar, J^(0) is a p-component vector function and J^(9) is a (pXp) 

matrix function. If 9^ is the true parameter, then h(k;9Q) =^(k), 



www.manaraa.com

41 

k = 0,1, , and J^(6q)=0, M = 0,1,2,— . Since J^(G) is nonnegative, 0^ 

is a minimal point of J,,(60 and hence j'(G^) =0. However, if is to 
M^O M^O -Q 

be locally identifiable, 6^ must be the unique minimal point for _(9) in 

some neighborhood of 0^, i.e.,, there must exist an open sphere S(0^,p) cQ 

with radius p > 0 centered at 0^ such that if 00S(0Q,p), 0^0^, then 

J^(0) 7^0 and hence 0 is not a minimal point of J^(0) . If we can establish 

a sufficient condition such that J^(0) is an injective function (a one-to-

one mapping) in some neighborhood of 0^, then this condition will imply 

that 0Q is locally identifiable. We first state a result given by 

Narasimhan in [lO]. 

Lemma 3.1 

Let S be an open set in R and ):S -* R be a C'^ mapping (a k-times 

continuously differentiable function) with k^ 1. Then if ^/(0) has 

constant rank j in a neighborhood of 0^eS, iji is locally injective at 0q 

if and only if j = p. 

Theorem 3.2 

A sufficient condition for 0^ to be locally identifiable is that 

there exists an open sphere S(0^,p)cQ with radius p > 0 centered at 0^ 

such that the (p Xp) matrix J^(0) is nonsingular for all 0eS(0Q,p). 

^^ T -Î «-» -1 « 1 ^ RTTT \ J. \ y JLL3 ±. ct a. u. v<;» u  ̂  ̂/ • J- &_ 

rank p for all 0sS(0^,p). By Lemma 3.1 J^(8) is locally injective on 

S(0Q,p). Let 0eS(0Q,p) , 0 0Q, then J^(0) T^O hence Jj^(0) /O, M = 0,1,2,o 

Thus 0^ is the unique minimal point for J^(0) , M = 0,1,2, , in S(0Q,p). 

The above theorem is an immediate result of Lemma 3.1. The least-

square identifiability and the identification algorithm for finding the 
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region of parameter identifiability will be studied extensively in 

Chapter 4. 

3=3 Local Parameter Identifiability from the Transfer Function 

In this section the systems considered are discrete-time. We will 

first briefly introduce the realization theory established by Ho and 

Kalman in [8] and explain the distinction between the realization and 

identification. Specifically, the parameter identification from the 

transfer function can be viewed as the realization from the transfer 

function restricted to the given parametrization. 

The quadruplet [F, G, H, D] defines the internal description of a 

system, which we shall denote by S, via the equations: 

X (k + 1) = Fx (k) + Gu (k) 

^(k) =Hx(k) + Du(k) (3.6) 

vviiCLc r la LITE II LI ACACC UJ.AIIDILXUII IIICILL 1Â. 

G is the n X q input matrix 

H is the r x n output matrix 

D is the rxq direct-coup ling matrix 

x(k) is the n-state vector 

_y(k) is the r-output vector 

u(k) is the q-input vector 

The external description of the system E is the zero-state impulsive 

response description, namely the description in terms of an impulse input 

and the corresponding output. There are two ways to represent the external 
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description of E. One of them is the time domain description. From 

equation (3.6), it can be easily seen that the impulse response of y, is 

given by 

WQ = D 

= HG + D 

M-1 . 
W = [ S HF^G] + D 
M i=l 

(3.7) 

and the impulse response matrix is given by 

W = 

s:
 

o
 HQ® + D 

"l 
HFG + HG + D 

• 

M-1 . 

% [ Z HF^G]+D 
i=l 

(3.8) 

By the frequency domain description, the input is related to the output by 

the transfer function T(z) such that 

Y(z) = T(z)U(z) 

where 
-1 

T(z) = {H(ZI - F) G+D} 

zeC (the field of complex numbers). 

(3.9) 

(3.10) 
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Through the concept of realization, the external description of a 

system can be related to the internal description of a system. The prob­

lem of realization can thus be stated as follows [8]: construct 

such that the identity (3.7) holds, i.e., given a sequence of constant 

00 

(rXq) matrices find a quadruplet [F,G,H,D} of constant matrices 

such that 

Mq = D 

= HG 

M-1 
= HF G 

The sequence [M_. is called the Markov parameters of the system Z. 

The dimension of Z is defined by 

dim(V) = dim(F) 

We say that the realization {F,G,H,D} is minimal if the dimension of 

F lb less than or equal tc the dimension cf any other realization of 

From the linear system theory, we know that a realization is minimal if 

and only if Z is both completely controllable and completely observable, 

i.e., if and only if 

rank[G,FG,, F'^ "G] = n (completely controllable) 

T T Ti*~ 1 T 
and rank[H ,(HF) ,—, (HF ) ] = n (completely observable) 
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Furthermore, given an external description, two minimal realizations 

l̂ = [Fi,Gi,Hi,Di} and are equivalent if and only if 

there exists a nonsingular nxn matrix P such that 

Fg = PF^P 

Gz - PG^ 

Hg = H^P 
-1 

D2  = DI (3.9) 

These two equivalent internal descriptions differ only in the co­

ordination of their state spaces. 

Even though we have the knowledge of the external description and 

the minimal dimension of S, generally we are not able to determine the 

quadruplet [F,G,H,D} uniquely unless the structure of [F,G,H,D} is con­

strained in some specified form. We can illustrate the above statement 

by the following example [2]. 

^  o  • ?  >  

[-(Q^ + ep 
1 

1 

x(k+ 1) = x(k) + u(k) 

®2 -(®3+V 0 (3 

y(k) = [ 1 0 ] x(k) 

The transfer function of (3.10) is 

z + + 9. 

T(z) = — (3.11) 

z + z (0 + Gg + @2 0^) +. (@2 (@3 + 0/|^) - ®2®3 
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Thus we have only three equations to solve the four unknowns 

[ 0 1 , @ 2 •  

83+ 64 - a^ 

91+92 + 93+6^ - 32 

(9i+62)(®3+ ̂4) " @2^3 ~ ̂ 3 (3.12) 

where ai, a2, and a^ are known constants. For this under determined set 

of equations, one of the four unknowns has to be dependent on the other 

three, hence the representation of (3.10) is not unique. However, if the 

system representation is constrained to have the canonical form: 

0 1 
S 

X (k + 1) =•- x(k) 4-

Gi @2 
. 

y(k) = [ 1 0 ] x(k) 

u(k) 

(3.13) 

then 

T(z) =-^ 
63Z + 64" @2^2 

2" - 02% - 01 

832 + 

z~+ a2Z+ ai 

(3.14) 

and 

®i = "1 

= a„ 
2 2 

= a. 
3 3 

= ^4 
*2^3 

(3.15) 

is the unique representation for system (3.13). The identification 
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(realization) of system (3.13) is an example of the canonical parameter 

identification problem which has been thoroughly studied. By canonical 

parameter identification, we mean finding a certain set of parameter in 

a given canonical parametrization which when applied with the input 

sequence from a given set of input-output sequence will generate a set of 

output data which will match the given output sequence within some well 

defined degree of accuracy. The primary reason for finding canonical 

parameters is to obtain a model which gives a good match to the measured 

input-output data. However, it may not be desirable to use a canonical 

form for a given physical system. That is, it may be desirable to identify 

specified parameters in a given parametrization. Hence the parameters 

identified in a specified canonical form may have little or no recogniz­

able relationship to desired physical parameters. To expound the above 

statement, we give the following example. 

Given the frequency domain external description of a second order 

zero-state system Z: 

c 
(3.16) T(z) = 

z^ + az + b 

The canonical parametrization; 

x(k+ 1) = 

0 1 

x(k) + u(k) 

(3.17) 

y(k) = [ 1 0 ] x(k) 
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can be uniquely determined by 

9^ = -b 

6_ = -a 

Gg = c (3.18) 

hence the canonical parametrization is globally identifiable. However, 

if we are given the physical parametrization which is the same as the 

example in section 2.3; 

x(k+ 1) = 

0^ 1 .0  

0.0 8r 

0 

-x(k) + u(k) 

9, 
. 3. 

y(k) = [ 1 O] x(k) 

then we get the following set of equations: 

(3.19) 

+ = -a 

'12 
= b 

Gg = c (3.20) 

It is obvious that and §2 can be interchanged without affecting the 

transfer function. Hence this physical parametrization is not globally 

identifiable but only locally identifiable since the two parameters: 

9^ = (@^,@2,63) and ^ 

will both generate the same transfer function even though they are isolated 

in the parameter space if 
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Definition 3.4 

A parametrization of the system matrices is a continuously 

differentiable function which maps Cl, the parameter space, to the 

n(n + q + r)4-rq , 
R space; i.e., a parametrization is a c function 

(F,G,H,D) (8) . 

For brevity, we let n(n+q +r)+rq =-t. The above definition was given by 

Glover and Willems in [6]. 

Definition 3.5 

Given a parametrization of a system Z, two parameters ^ 

are said to be unresolvable from the transfer function if 

H(ep (zl - F(ep)"^G(0p +D(9p = H (9^) (zl - F (8^))" ̂6(9^)40(82) 

(3.21) 

for all zeC and z ̂ (AXF(8^)), AXF(G^))) where À(') denotes the eigenvalues 

0(9^) = D(^^) 

H(Gi)FX9^)G(8^) = H(8^)F"(92)G(8p i = 0,l,2,— (3.22) 

The following definition is similar to the one given by Glover and 

Willems in [6]. 

Definition 3.6 

A parametrization is said to be locally identifiable from the transfer 

function at Q^eQ if there is an open sphere S(8^,p) cQ with radius p>0 

such that there is no SeS(8^,p), Or 8 , which is unresolvable from G i.e., 
- ^0^ - -0 -0 

if there is a 8SS(8q,P) such that 
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D(0) = D(0q) 

H(G)F^(G)G(e) =H(GQ)F^(GQ)G(@Q), i = l,2,— (3.23) 

then 0 = 0„. 
—  — 0  

By Lemma 3.1, an immediate result follows. 

Theorem 3.3 

Let (F,G,H,D) (6) ; Q-*K^ be a parametrization of E, then the 

parametrization is locally identifiable from the transfer function at 

QQSQ if the gradient of the Markov parameter matrix M(9) with respect to 

9 has constant rank p in an open sphere S(6^,p) with radius p >0 centered 

at 9q where 

D(9) 

H(0)G(0) 

H(9)F(9)G(e) 

H(e)F (e)G(ô) 

M (6) = 

If a parametrized system is of minimal dimension, then it is related 

to its zero-state and zero-input equivalent systems by similarity trans­

formations. For the physical parameter identification problem, we are 

interested in the equivalent systems which have the same parametrization, 

i.e., we wish to investigate if there is any transformation matrix which 

will transform a parametrized system to an equivalent system with 

different parameter values but with same parametrization. Specifically, 
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we shall investigate the solution (P,0), PeGL(n), the space of nonsingular 

(n Xn) matrices, QeQ, of the following set of equations: 

PF(0)P"^ = F(0q) 

PG(e) = 0(9^) 

H(9)P"^ = HCÔq) 

D(G) = 0(6^) (3.24) 

where 0^ is the true parameter. It is obvious that if there is an open 

sphere S(G -p)cn such that (I .8 ) is the unique solution of (3.24) in 
0 nXn 0 

GL(n) XS(0Q,p), then the parametrization is locally identifiable from the 

transfer function at 0^. The following theorem provides the sufficient 

condition for (3.24) to have unique solution locally which was given by 

Glover and Willems in [6], 

Theorem 3.4 

•t 
Let [FjGjHjD]: Q-'R be a given parametrization of the system matrices 

[F,G,H,D] and suppose is minimal. 

Let 

PF(0)P''' 

PG(9) 
C(P,@) = 

D(9) 

If there exists an open sphere S(0^,p) with radius p>0 centered at 

2 
0 such that V £(P,0) has constant rank n +P at P =I and for all 
0 (P ) 0) 

QeS(GQ,p), then the parametrization is locally identifiable from the 

transfer function at 8 . The matrix V, . £(P,8) evaluated at the point 
U (P5  0) 
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(I,e) is given by 

Onxn®"''W-F(§)®Inxn) 2 2 

'(p,6)e(P.e) 
(1,5) 

rnxn 

O 
rqxn 

n xn 
2 

ni XP 

G(6) 
nqxp 

H(0) 

_ / 
D(e) 

rnxp 

rqxp 

(3.25) 

2 2 
which is an (n +nq + rn+rq) by (n + p) matrix. 

We give an example to illustrate the above theorem. Consider the 

system parametrized by 

F = 
0 1 

i  h -  « . i  
1 . 1  Z J  

G = 
0 

e„ (3.26) 

H = [ 1 0 ], 

D = [ 0 ] 

9 = [E^ @2 

then 



www.manaraa.com

53 

(1.8) 

0 0^ 0 0 

1 G 0 0 
2 

0 0 0 0. 

0  0  1 0 ,  

0 0 0 0 

0 0 0 0, 

- 1 0  0  0  

0 - 1 0 0  

0 0 0 0 

0  0  1 0  

0 0 0 1 

9 0 0 0 
1 2 

0 GL 0 8 
1 2 

0 0 0 

10 0 

0 0 0 

0 10 

0 0 0 

0 0 1 

0 0 0 

0 0 0 

0 0 0 

0  0 ^  - 1  0 0 0 0 

1  0  0  - 1 1 0  0  
2 

-9^ 0 -0^ 0^ 0 0 0 

0 -0^ 1 0  0  1 0  

0 a 
3 

0 0 Û 0 0 

0 0 0 «3 0 0 1 

-1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 

0 0 0 0 0 0 0 (3.27 

which is of rank 2 +3 = 7 for all 0eR hence the parametrization is 

globally identifiable from the transfer function. 

We will extend the above theorem for the case that 9 includes the 

unknown initial state , i.e., 0=1 I , where r] is the unknown system 

L U  J  
parameter vector contained in with a specified parametrization. 
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Then the augmented parametrization is a mapping from the parameter space 

Q to the 9 + rq + n Let -t/ ' = n(n + q + r) + rq + n. We note 

that 

-0 ^^nxn" °nx(p-n)^-

and ]l = [0(p_n)xn: ^(p-n)x(p-n) (3.28) 

Let 9^ = 

r V 
-00 

0 

denote the true parameter. The solution (P,0) of the 

following set of equations is sought 

fZo = Zoo 

PF(T])P"^ = F (Do) 

PG(r]) = G(T]Q) 

H(ri)p"^ - H(r]Q) 

D(T]) = D(T]Q) (3.29) 

I n e roi i owi nc rneorpm I r esrann snRn unrnprnarp iv. 

Theorem 3.5 

Let fx^5F,GjH,D](0):Q-•R be a given parametrization of a system 

S and suppose {F,G,H,D} is minimal. Let 

r 

g*(P,G) 

PX. 
-u 

PF (T])P 

PG(T]) 

H(])P 

D(T]) 

-1 

-1 



www.manaraa.com

55 

If there exists an open sphere S(9Q,P)CQ with radius p>0 centered 

•vV 9 
at 0Q such that V^p (P,G) has constant rank n + p at P = ̂nxn 

all 0eS(9q,P), then 0^ is locally identifiable (by definition 3.2). 

V/ (P (P\Q) evaluated at is given by 

(I,G) 

(^nXnCEXSo ) 2 
nxn 

Cnxn®" C)-F(I])®W 2 2^V®>2 

rnxn 

n xn - n xp 

(Vgë (]]))_ 
nqxp 

o 
rqxn rqxp 

(3.30) 

which is an I' by (n +p) matrix» We note here that Xg = Xg since x^ is 

>0 I TTM-N ARRAR» F" OR- ANRL 'HONR*<=» V7 V = 1 : () I Dv 1,1. > 
nxn- nx(p-n)- ' " 

Comparing Definition 3.2 and 3.6, and Theorem 3.4 and 3.5, we see 

that identifiability from the transfer function is equivalent to the 

zero-state parameter identifiability according to Definition 3.2 which is 

a more general definition. 
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3.4 Region of Least-Square Identifiability and 
Transfer-Function Identifiability 

In this section we will discuss the relation between the least-square 

identifiability and the transfer-function identifiability. We consider 

a parametrized single-input, zero-state linear system E with system 

matrices {F,G,H,D}. Let the true parameter be 0^. Its measured impulse 

response matrix is given by 

which is an r(M+ 1)-component vector where r(M+l) S p .  

The output sequence generated by the unknown parameter 9 when applied 

with the impulse input is given by 

j[(0) D(@o) 

yd) H(9^)6(9^)4-0 (9^) 

][(2) H(@Q)F(8Q)G(GQ) +H(GQ)G(eQ) +0(6^) 

(M) {. (0g) F" (Gg) G (Gg) } + D (@^) 

M 
(3.31) 

"h(0;9)' [ D(0) 

h(l;9) H(9)G(9)+D(e) 

]^(9) = h(2;9) = H(9)F(9)G(9)+H(9)G(9)+D(9) 

[.ZQH(e)Fi(8)G(2)}+D(e) (3.31) 

Let the identification criterion be 
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M 

Then 

- kgol^]i(k;e)-y(k)f [h(k;81-y(k)] 

"-M^ '-M^ 

= [^;(e)]%(G) - Y^] 

(3.32) 

(3.33) 

which is a p-component vector function, and 

^  [ ) / («) ]%(«) ]+  - ! „ ]  (3.34) 

which is a (pxp) matrix function of 9. 

We note that 

and ^(9^) 

= 0 , 

= 0 , 

[h:(6o)]%(8J] (3.35) 

Recalling that the Markov parameter matrix is defined by 

0(6) 

H(9)G(0) 

M (9) = H(@)F(9)G(G) 

I 

H(0)F^"^(e)G(9) j 

By performing row reduction on _^(e), its easily seen that 

rank[H(0)] = rank[l^(6)] for all 0sO 

and rank[M'(6)]= rank[h^(6)] for all 9eQ. (3.36) 
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Moreover, from the matrix theory we know that 

rank[i/(Q)] = p if and only if rank[(h^(9))'^(hj^(0))] =p. 

For brevity, let 

(3-37) 

and N^(8) = [h^(e)f[h;®]. (3.38) 

Our purpose is to find a region S(6^,p) such that 0^ is both least-

square identifiable and identifiable from the transfer function in S(9q,p) 

We first state the following Lemma. 

Lemma 3.6 

Let B and C be two (n X n) matrices. Let ||-|| be a norm on the space 

of (nXn) matrices. 

If (i) B is nonsingular, 

(ii) 1|b ^11 

(iii) ||c - B|| £ 6 , and 

(iv) Qfô < 1, 

then C is nonsingular and IIC ~|l S 
-1 , ,  a  

1 - aà 

Theorem 3.7 

Let E be a zero-state, single-input linear system parametrized by 

the unknown parameter 9. Let the true parameter be 8^. Let ||"|| be a 

norm on the respective spaces. If 

(1) N^(GQ) is nonsingular, 

(2) there exists an open sphere S(0Q,p) with a radius p >0 centered 

at and a set of positive numbers (À,Y,p) such that 
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(i) 

(ii) ||[f^(Ê)]%(8)|M\ for all 0eS(9ç^,p), 

(iii) 11N^(0)1|Ŝ  for all GeS(9 ,p), 

(iv) X((j,p +Y) < I, 

then 0 is both least-square identifiable and identifiable from the 
-0 

transfer function in S(0^,p). 

Proof: By 2(iii) we have 

l|Nj^(i) -N^(eQ)||^PH all @68(00,p) 

Moreover, j|N^ by 2(i). Applying Lemma 3.6 to this situation, 

we have a = \, 6 = pix, and Xp|i < 1 by 2(iv). Thus N^(9) is nonsingular and 

fcallSeSCe^.p) 

Since N^(e) = [h^(§) ]'^[h^(6) ] and N^(G) has constant rank p in S(0Q,p), 

therefore h^(@) has constant rank p in S(9^,p) and M(0) has constant rank 

p in S(0Q,p), hence 0^ is locally identifiable from the transfer function 

by Theorem 3.3. We now show that J^(@) is nonsingular for all 0eS(0^,p) 

and y(0) is locally injective on S(0^,p). 

By (3.34), 

therefore 

for all 6GS(0 ,p) by 2(ii). Applying Lemma 3.6 again, we have a = — , 
0 1 - A.lip 
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ô =Y, and aô = < 1* Thus ̂  ' (G) is nonsingular, i.e., ̂'(6) has 
1 - Â-iip ^ M 

constant rank p for ail 6eS(0Q,p). This implies that 0^ is locally 

least-square identifiable by Theorem 3.2. 

A computation procedure for finding explicitly S(0Q,p) will be 

presented in the next chapter. 
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4. REGIONS OF PARAMETER IDENTIFIABILITY FOR 
DETERMINISTIC LINEAR DYNAMIC SYSTEMS 

In this chapter we will study the identification algorithm exten­

sively. We will first study Pereyra's [13] theory on the modified Newton 

method, which we shall call the Gauss-Newton method, for solving nonlinear 

least square problems. Then we will present the identification algorithm 

proposed by Herget [7] for finding the regions of parameter identifi-

ability. 

4.1 Nonlinear Least-Square Problems and 
the Gauss-Newton Method 

In this section we will study the sufficient conditions for the con­

vergence of the Newton iteration sequence and the Gauss-Newton iteration 

sequence. 

Definition 4.1 

A real-valued function ||°j| defined on the R^ space is called a 

norm if 

(i) ||x|{ 2: 0 for all xsR^, 

(ii) ||x|| = 0 if and only if x = 0, 

(iii) II2S + 1II ^Ibll + lllll for all x,ieR", and 

17^ II ^rvll = l^/lllvll -Pn-»- all anH oil Vf T) 

Definition 4.2 

A mapping )|i lO CR^ -« R™ is said to be Frechet-dif ferentiable at 9, 

where 0 is an interior point of Q, if there is an (m x p) linear operator 

A such that 

lim (l/|lk||)|||(e+k)-t®-Ak|| = 0 

llisll - 0 
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for all k such that 0+keQ. A is denoted by f ' (0) and is called the F-

derivative of at 9. 

By a least square problem, we mean given a nonlinear transformation 

h:n CR^ between the set QCR^ and the r" space (p^m in general), 

and the sequence of observations YeR™, find a parameter G^eO such that 

the Euclidean norm of h(0) -Y is minimized at 0^, i.e., we want to find 

the stationary points of the criterion ||h(0) -Yj|^. 

For brevity, let _f(0) =h(0) - Y. If ^(0) is at least twice Frechet-

differentiable on Q, then we can differentiate the criterion to find the 

minimal point of the criterion. Let 

J(0) = [h(0) -Yf[h(0) - Y] =/(0)f(0) 

which is the square of the Euclidean norm of h(0) -Y. Then 

6(8) - 1/2 J'(9) =[f'(e)]^f(e) (4.1) 

where _f'(0) is an (mxp) matrix function of 0 and ^(0) is a p-component 

vector function of 0. 

To find the stationary points of J(0), we let 

^(0) = 0 (4.2) 

Many questions arise, (1) Does there exist some 0^eO such that (G^) = 0? 

(2) If 0Q exists, is 0^ unique locally or globally? (3) If 0^ is unique 

locally in some region, can we find explicitly the region? (4) If 9^ 

exists, how do we construct an iteration sequence which will converge 

to Gq? 
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To answer these questions, we proceed as follows. The standard 

Newton iteration sequence for solving the equation 0(6) = 0 is defined by 

= n = 0,l,—, (4.3) 

where 

^ ' (0) = [ J ' (9) ff'(8) 4- [ f " (G) f f (G) , (4,4) 

and f"(6) is an m XpXp bilinear operator defined by 

a^f<(8) i = l,-—,m 

aGjaGk k = i,---,p 

The manipulation of the bilinear operator follows that given in Sec. 3.1. 

The Newton-Kantorovich Theorem provides sufficient conditions for the 

convergence of the iteration sequence (4.3) and the uniqueness of the 

solution for (4.2) in a region. 

Theorem 4.1 [Newton-Kantorovich] [l2] 

Assume that ̂ IQCRP-^R^ is F-dif ferentiable on a convex set Qq cQ 

and that 

SuDDose that there exists an 9.eQ« such that lid ' (6^) II é B and Of = BvTi ̂ 1/2 ' - —Q yj IM- —\J I ' • . . 

where ||[^'(^^)]"^^(6^)11 

Let 

Pi = (PY) - (1 - 2a) pg = (PY) ̂ [1+ (1 - 20-)^], 

and assume that S (G^ip j^) where S(9^;p^) is the closure of the sphere 
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S(6 ,Pi) with radius p, centered at G . Then the iteration sequence 
^0 1 1 -0 

= n = 0,l,—, 

is well-defined, remains in S(G^gp^) and converges to a solution 6^ of 

^(G) =0 which is unique in S (§Q)p2) ̂10^. Moreover, the error estimate 

11^0 "-nil ̂  (2a)n = 0,l,—, 

holds. 

By (4.4), we see that by using Newton's method, we must calculate 

J"(0) which is a bilinear operator in each iteration. This is a compu­

tational inconvenience. "Pereyra [13] developed a modified Newton method 

which we shall call the Gauss-Newton method. The modification is that 

^'(0) is replaced by its first order approximation [f ' (0) (0) and the 

modified iteration sequence is defined by 

w mtw). n = u.i, c+.u; 
—n+i —n — —n' " —n • • -

Due to the approximation on^'(0), another set of sufficient conditions 

for the convergence of (4.6) and the uniqueness of the solution of (4.2) 

was established by Pereyra [l3]. 

Theorem 4.2 

Assume is F-differentiable. For brevity, let N(0) = 

[f'(0)]'^f(0) . Let Ggsn. If 

(1) N(©q) is nonsingular, 

(2) there exists a sphere S(9Q,P)CQ of radius p centered at 0^ such 

that 
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(i) ||N"^(gQ)t| 3l/2\, 

(ii) ||[f"(0)ff(e) - for all 9eS(Q^,p), 

(iii) ||[f(^Q)ff(GQ)||^Y 

(iv) ||N'(©)|| for all 9eS(0^,p) 

(v) A.(tip + Y) <1/2, ~ 

(vi) nsp, »h.re n - • 

Then the iteration sequence defined by (4.6) converges to the unique 

solution 0Q of ̂ (Q) = 0 in the sphere S(0^,ri)o Moreover, the error 

estimate is given by 

li^0"-nl! ̂  A, 

where k = 2A. ([ip H-y) . 

The above theorem provides a convergence region centered at the 

initial iteration point such that the solution of (4.2) is unique in that 

-TPCTTon. 1 f T.7<3 «-nnwlpfigp of rhe solution of t'4.2). then we art; 

able to find a region centered at the solution @ such that Q is the 
-Q -Q 

unique solution of (4.2) in that region by modifying the above theorem. 

This will be studied in the next section. 

4i2 Regions of Parameter Identifiability 

After introducing the theory and algorithm for solving the nonlinear 

least-square problems, we are now going to apply it for the control system 

parameter identification problem. We shall first introduce the t^-norm 

which will be employed by the identification algorithm developed in this 

section. 
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The well-known class of norms on space is the -l^-norm defined by 

When p = 2, the t^-norm is usually called the Euclidean norm. 

The limiting case of the -t -norm is the -L^-norm defined by 

lyi = Max jx 1 
ISi^n 

We can thus now induce a norm on the space of linear operators from 

R to R . We denote this space by L(R^.R™) . Given any two norms jj*|| and 

ll'll ' on r" and R™ respectively, and any AeL(R^,R™), the norm of A with 

respect to |]*j| and ||*||' is defined by 

!!A |1 = sup ||Ax|l ' 

INI = 1 

Such a matrix norm satisfies the properties: 

(i) ||A||^0 for all AeL(R",R™) , 

(ii) ||A|| = 0 only if A = 0, 

(iii) j|CÏA|l = 1^1 ||A|| for all csfeL(R",R^ , 

(iv) ||A+b|| s||A||+||B|| for all A,BeL(R",R®). 

The , ̂ 2~' norms are the most useful in numerical analysis 

T.Tr\-*-lr TTr»-** f-TI A o r̂cf*oTn n -Ft NN NMKLEM N O O 4 N f"T^TC 

we will employ the 1 -norm. We denote the I -norm of a matrix A by 
• CO CO 

The following theorem provides the explicit expression of ||A||^ [l2]. 

Theorem 4.3 

Let AsL(R^,R™) where both r" and R™ are normed by the -t^-norm. 

Denote A =[a. 
1J 
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Then 
n 

Max S la. . 1 (4.7) 
j = l 

Proof: For any XSR", 

IIAsIL = Max I (Ax) 
l^iSm ^ 

I a = Max .Sa.x. 

^ Max |a,,llx,| 
1 SiSm 

n 
^ Max EJa |-( Max |x |) 
1 J  ̂ ^ 1^j ^ 

= (, Jj^iji^lNL (4.8) 
'CO 

It sufficies to show that there exists an x eR such that the equality 

Define x by 

a. via, .1 . a. . 0 
' KJ' ' "J j = 

J 

Then 

IIk'11 =1, and 
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1|AX II = Max 1 (^*) I 
1^ 

, n Vf I 
= Max S a. .X. 

1 2 i  j=l ^ 

If i ̂  k, then 

jEil'ijl I'll 

^ Jj^ul 

n , 

j=l 

If i = k, then 

ij!iVji 'jSii'kj 

n 
Thus 1!/^ M - Z ja, .1 - Max and tlp.e equality in -< ^ 

" - j=l l^i£m 

attained. 

We can also induce an t -notm on an (m x p X p) bilinear operator B 
CO 

defined by 

Hul l  -  l l tJvl l  
iri'co " I, |g|| = 1 

We now consider the problem of identifying the vector of unknown 

parameters ]], and the unknown initial state w(0) of a parametrized 

deterministic system whose state at time k. is the vector, w(k), where 

rw(k)l 
k = 0,1,2""". Let x(k) =1 | , which we shall call the augmented state 
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vector, and let x(k) be a p-component vector. Then 0 = x(0) = 
w(0) 

T1 
IS 

to be identified. We assume that the true parameter 0^ is an interior 

point of a known compact subset QCRP, and the system is stable for all 

admissible inputs and 0sQ. We note here that after the augmentation, 

the identification problem of the original system is equivalent to the 

initial-state observation problem of the augmented system. We assume 

that the function ̂ (x,k) is known as a function of x and k and that 

x(k+ 1) =^(x(k) ,k) (4.9) 

We also assume that the inputs to the system are known implicitly 

in _g(x,k) . 

Furthermore, we assume that observations of the state can be written 

in the form 

l(k) = Cx(k) (4.10) 

where c is a known (r x p) constant matrix. 

Let 

Z(0) 

, z(l) 

-M " 

l(M) 

(4.11) 

be the m-component vector of observations, where m= r(M+1) ̂ p. Let 
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-= 

Cx(0) 

Cx(l) 

Cx(M) 

(4.12) 

where x(k) is the solution to (4.9) when x(0) =0. Moreover, let 

4® 
(4.13) 

We assume that we have obtained a solution, say such that 

= 0 (4.14) 

i.e., Oq is the parameter value which when applied with the input sequence 

from a given set of input-output sequence will generate a set of output 

data which will match the given output sequence. In order that is 

identifiable, GQ must be an interior point of an open sphere S(G^,p) cQ 

wjLLii iduiu» u ^ V CcùLclêu CIL ry &uCii LIIAU i.o Liic uui-uuc 
-0 -0 

the equation 

IM® • " (4.15) 

in S(0^,p). We are now going to establish the sufficient conditions for 

the existence of S(0Q,p). Let the identification criterion be 

(4.16) 

We see immediately that J^(G) = 0 if and only if ̂ ^(9) = 0» Since Jj^(8) is 

nonnegative for all 8, therefore its minimal value is zero. If we have 
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the knowledge of 9^, then J_,(G ) = 1,(9.) =0 and 0 is the minimal point of 
—0 M ̂ 0 ""M 0 —0 

J^(Q). Let 

- 1/2 :«(§) . (4.17) 

then 

(4.18) 

Let 

»„(S) = (§)]%(«) (4.19) 

Note that 

i„(8o)=0. (4.20) 

and 

Thus if there exists an open sphere S(9Q,P) such that ^^(0) is non-

singular for all 6eS(0^,p), then ̂  (0) is locally injective on S(0^,p) 
V n 0 

and thus 0^ is locally identifiable by Theorem 3.2. The following theorem, 

established by Herget [7], provides sufficient conditions for the existence 

of such S(SQJP)° 

Theorem 4.4 

Let and be the vector spaces of p and m-tuples respectively 

over R. Let ||'|| denotes any norm on the respective spaces. Let ̂ ^(0) be 

an m-vec cor function of QsR^ which is twice F-differentiable onQCR^. 



www.manaraa.com

72 

If (1) there is G^eQ such that = 0, 

(2) nonsingular, 

(3) there is a sphere S(0^,p) with radius p >0 centered at 0^ and n 

set of positive numbers such that 

(ii) ||[f;(8)]f^(9)||^y for all eeS(GQ,p), 

(iii) ||N^(9)j|^lx for all 0eS(Gg,p) , 

(iv) for all 0eS(0^,p), 

(v) X^Sp/4, 

(vi) \ (2p,p +Y) ̂ 1/2, 

then 0^ is locally identifiable in S(0Q,p). Moreover, for any ©^cS(0Q,p/2), 

the iteration sequence 

n = 0,1,2,-

converges to the unique solution 0^ of f (9) =0 in S(0 ,o/2). 
—  ( )  —M — —0 • 

Proof; We shall first prove that N^(0) is nonsingular and ||n^ 

for all 9eS(0^,p). By 3(iii), we have 

||\(6) -N^(8o)||^W for all %S(Q^,p) 

Applying Lemma 3.6 to this situation, v/e have Qr=À/2, ô = p-p and u" -

?i.u,p/2 £ 1/8. Therefore N (0) is nonsingular and IIn ^(0)11^ = 
M " M ^ ^ _ A.UO 

l+(l-w<^ all scse^.p). 2 

A result due to Bartle in Herget [7] is: If II ^ P 

all eeS(G^,p), then ||6^(9^) -^;^(eo)(6^-8g)t|^p||G^-e2ll for all 

0^>02®^(®Q5P) ° our case, ̂ ^(0^) " (4.21), Thus by 3(ii) and 
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(iii) 

K® II = 11%® - « 

^ p,p for all 0CS(GQ,P) 

Therefore we have 

(«1 - «2) II ^ (w+y) Itei - ̂ 2 

for all 0^,02sS(6Q5P). 

Also, look at 

Thus 

IK(e) -^(8o)||^W.p for all eeS(G^,p) 

Let Q^eS(0^,p/2), and 
U ^ 

We want to show that G^eS(Gg^p/Z) for all n. We prove it by induction. 

Thus |[0j - 0^11 ^A,r) 2p/4„ Hence 0^eS(0^,p/2) and 0^eS (6^,p) , Now assume 

0^cS(0Q5p/2) for v = l,— ,n. Then we have 
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Thus 4^(9^) 

= ̂ m<2V>A®V.I>-''M5-I'®V-VI> 

Therefore ||gg@^)||s W + Y)||è^-ë^_J| + |.p||9^-è^_J| = 

where k = 2p,p + Y» 

which implies 

Look at 

s ftk)||J -i^_j 

Therefore 

Note that 

/-V FSY U FV FV 
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Thus 

-n+l -0^^ ̂  

n V 

^  ' l e  - 9  
1 - Xk"-1 -Q 

(T:^) Ï 

" T i k . . .  

which implies 0^^^GS(6Q,p/2), thus the induction proof is completed. 

r"^ T® 
Next, we shall show that [0 ]^_Q is a Cauchy sequence. Let m>n and 

m = n + j , then 

^ r>^ /V/ '•'••J-'-rv-' 

Thus 

nfj-1 
9_-6 =9 -9 = S [e -9 1. 

n n+j n v=n vfl ^ 

~ ~ n+j-1 ̂  rv 

n+j-1 V 
g z  f t k )  1 ^ - 0  
V=n U 

^ ak)"[ s (W]||9 - 9 
v=0 -f 
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(£) 
1 - \k 4 

$ 

= (\k)"(P) 

Since A.k^l/2, therefore lim (À.k)^(^) =0 and hence is a Cauchy 
n-* 00 

sequence. 

,P 
Since R is a complete normed space, {0^]__Q converges to some point 

9j^eS(0 ,p). We must show that G^ = 6^. On the contrary suppose 6^/0Q, 

then we can write 

-4- (• m l'A - m ' m ') i'h - h "t 1 
• ' M ̂ 0' ""0 -1" 

since =0^(9j) - 0 and 

Thus 

lis - ij^ll ̂  (up +V + up) 

^ 1/2 

which is a contradiction. Thus 9=0 and the proof is completed. 
-0 -1 

Remarks : 

(1) S(6^,p) is the region of parameter identifiability, i.e., 0^ is 

the unique solution for ̂ (9) =0 in S (9^;p) , but the convergence 
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of the Gauss-Newton iteration sequence is assured in S(0^,p/2). 

This is an added feature. However, our primary interest is the 

uniqueness of the solution of ^^(8) =0 in some region in Q. We 

have assumed we already know 6 . 
-0 

(2) If we are concerned about the uniqueness of the solution only, 

then conditions 3(i), (ii), (iii) of Theorem 4.4 and A.(p,p fy) <2 

suffice for the existence of S(9^,p). To prove this, we suppose 

that there is a 6^eS(0^j,p) such that f^(8^) =0, then ̂ (9^) =0. 

Thus we can write 

Thus 

which is a contradiction. The region implied by these set of sufficient 

conditions will generally be of larger radius since A. (^p + y) ̂1/2 is more 

conservative than A. ()ip fy) "^2. 

(3) Theorem 3.2 is implied by Theorem 4.4. To prove this, we first 

recall that N (0) is nonsingular and IIN ^(0)11 <X for all 
M M " 

0eS(0 ,p), andcà'(9)=N (6) + [f" (6)'j'^f (9). Therefore 
- ^0 ~M M" "M M 
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for all 6eS(0^,p). Apply Lemma 3.6 again, we have a = X. ^ =y 

and Xy^l/2<1, Thus ̂ (6) is nonsingular for all GsS(9^,p) 

and ̂ ^(6) is locally infective on S(0Q,p). 

We now derive a set of recursive formulas for computationally veri­

fying condition 3(i) to 3(vi) of Theorem 4.4 for the case of dynamic 

systems. 

Recalling that 

Thus 

f^(G)=h,(9).Y^ 

f Cx(0) 

Cx(l) 

Cx(M) 

r cx(0) 

1 o
 

z(i) 

, 
l(M) 

AN 
I Sir 

Cj(x(M- 1) ,M- 1) 

[ 3:(o) 
t /1\ B 

J (4.22) 

M 

Cg'(x(0),0) 

Cg'(x(M- 1) ,M- 1) —_g"(x(0),0) J 
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cr„(9) 

cr^(») 

cr„® 

where 7^(6) =j'(x(M- 1) ,M - 1) ^ (0), k= 1, 

and r (6) =I = (pXp) identity matrix, 
0 pxp 

— ,M 

f cr:(6)l 

cr^(9) 

cr;(G) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

where r( 6 ) = [ ^ " ( x ( k - l ) , k - l )  r̂ (̂G)]' .,(6) 

and 

+  _ g ' ( x ( k - i ) , k - i )  r  m ) ,  k  =  l ,  
K-i 

r(e)=o 

—-,M (4.27 

(4.28) 

To r.ompiitR the bounds on the norms given in the hypothesis of Theorem 4.4. 

we choose the I -norm since the procedure is relatively straightforward 
CD 

if we employ the interval arithmetic [11]. 

Let 

^ = [set of all finite closed intervals [a,b]:a,beRja ̂ b] 

The interval I = [a,a] is called a degenerate interval. The interval 
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arithmetic operations are defined by 

I * J = [x*y:xel,yej] for all (4.29) 

where the symbol indicates one of the arithmetic operations 

and /, except that I/J is not defined if OeJ. 

For example, 

[a,b] + [c,d] = [a + c,b+ d] 

[a,b]°[c,d]=[min(ac,ad,bc,bd), max(ac,ad,bc,bd)] 

[a,b]/[c,d] = [a,b]"'[l/d,l/c], provided 0^[c,d]. 

If the real number § is to belong to the closed interval on the 

real numbers, we denote this interval by 

[§] = [5^,5%] for brevity» 

If \|i (x) is a continuous, real-valued function of xeR, then the interval 

function [ilf([x])] is defined by 

[|̂ [x])].= [y:y = 4(%),%G[x]l 

An interval function will be called a rational function if it is 

defined and can be expressed as a rational interval arithmetic expression 

in the interval variable and a finite set of constant coefficient intervals. 

For simplicity, we shall assume that all of our functions of GsR^ are 

rational functions so that interval arithmetic suffices to evaluate their 

normso It is always true that the true interval function is a proper 

subset of the computed interval, i.e., 
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U t([%,%]) ̂  [t([x])] cl̂ ([x]) 
xe[x] ^ 

where Iiji ([%]) is the computed interval obtained by replacing x by [x] and 

evaluating by interval arithmetic instead of ordinary arithmetic. The 

following Theorem in [ll] proves the above statement. 

Theorem 4.5 

Let I = Ca,b]c^ and 

Let ^ is continuous on^^}, and d be a metric on J such 

that (;j|_,d) is a complete metric space. For any rational function \jte(j[_,d) 

and arbitrary Je^^, 

U *([x,x]) CI*(J) 
xe[x] r 

Proof: From (4.29), it follows that if I,J,k,LG/j^, Ick and JcL, then 

I A J C  k*L 

provided in the case of division that O^L. This property of interval 

arithmetic is called "monotonie inclusion". Hence the result is obvious 

from the monotonie inclusion property and the definition of the rational 

interval function. Since a finite number of these operations is involved 

and since for every xe J .[x,x] C J, [x,x]e^^, then ij; ([x,x] ) cl ;li(J) . To 

prove that equality need not be attained, it suffices to give an example. 

Let ^(x)=x^, J = [-1/2,1] 

Then I*(J) = J^ = [-1/2,1], 
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but [t ([%])] =[0,1], 

thus [-1/2,1] f [0,1]. 

We can now apply the interval arithmetic to the evaluations of norms 

required in Theorem 4.4. 

The closed sphere S(6^,p) is the vector interval given by 

[«̂ ] . s(ê ,p) - P.%. + p] ».30) 

which is the Cartesian product of closed intervals. We consider condition 

3(iv) of Theorem 4.4 first. We wish to have a bound on 

sup ||6_(g)|| = sup Max I0 (0)1. 
0eS(0Q,p)^ eeS(^Q,p) l^i^p Ml 

Let 

then 

sup ||6«(G)||= Max {Max[|0 ([§ ])|, |0M ([Jq])|]}' 
GkS(G ,p) M ISiàp Li 0 '-Ri ^ 

The computation of I ĵ ĵ([6q]) is generally much easier than that of the 

[^([6Q])], moreover, by Theorem 4.5, 

sup ||0 (f)|| ̂ Max {MaxCll 0 ([0 ]) 1, |l 0̂ .([0 ])|]] 
0eS(0 ,p)  ̂  I6i^p L % u R 1 0 

(4.31) 

Hence we will compute the right hand side of (4.31) as the bound of 

the norm of çy (9). 

For condition 3(ii) of Theorem 4.4, we let 
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A® - a (4.32) 

for brevity. 

Then 

sup ||A(0)|| ̂  Max [ I Maxtjl a ([0 ]) 1, jl a ([e ]) ]]] 
GGS(G ,p) l^i^p ̂  iJ U K ij 0 

0 (4.33) 

For condition 3(iii) of Theorem 4.4, we let 

where 

Then 

«©-[••.jk®] = W-34) 

*.35) 

sup ||BXe)|| = sup [ sup IIB(8)^11 ] (4.36) 
8GS(@g,p) 088 (9^,p) ||i|| = l 

We note that ||^|| = 1 if and only if =+l for some i = l,— ,p. Hence 

we introduce the following notation. For i,n=l, ,p, let 

= [-1,4-1] if i ?^n 

and =[+1,+1] 

For i=l, ,p and n = p+l, ,2p, let 

= [-^,+1] IfiT^n-p 

[§i]^ = [-1,-1] ifi = n-p 

Then we have 

sup IIB(9) II ^ Max [ Max .Z S Max{ jl b ([9 ])'[^ ] |, 
0GS(e ,p) isi^p 1 5nS2p ^ ^ 

(4.37) 
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We summarize this algorithm by the flow graph in Fig. 1, 

4.3 An Example of Computing the Region 
of Parameter Identiflability 

If a system is linear, time-invariant, and its parametrization is 

known, then its augmented system has the quadratic-in-the-state bilinear 

representation. 

I.e. 

x(k+ 1) = [F + Dx(k)]x(k) + [G+ Ex(k) ]u(k) 

2(k) =Gx(k) , 

£(x,k) = [F +Dx]x+[G+Ex]u(k) , 

(4.38) 

(4.39) 

where u(k) is a q-vector, F is a (pXp) matrix, G is a (pxq) matrix, D 

is a (pxpxp) bilinear operator, and E is a (p X q X p) bilinear operator. 

Then 

(x,k) = F+ (D+ D )x+E u(k) , (4.40) 

and 

^"(x,k)=D + D (4.41) 

We now give an example to illustrate the algorithm of Theorem 4o4. 

Consider the parametrized system which has already been given in Sec. 2.3. 

(k+ 1) 

w^(k+ l) 

\ -

0 Tlr 

w-j (k) 

J L 
ŵ (k) 

+ 

0 

u(k) 

j i k )  = [ 1 0 ] 
w^(k) 

w?(k) 

k — 0,1,2,--- (4.42) 
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The block diagram of this system is depicted in Fig. 2. We note that 

by reversing the positions of 
z -^2 

and — , and by transforming the 
Z- Til 

initial conditions by a similarity transformation, the resulting equivalent 

system will generate the same output sequence. The equivalent transfor­

mation matrix is given by 

0 
P = 

Hi-IJ 1 

which has already been obtained in Sec. 2.3. The parameter G = [w.(0). 

WgCO), T]^, Tig, is to be identified. Letting x(k) = [w^ (k) , w^Ck), 

Tig, Ty]^, this system can be written in the quadratic-in-the-state 

bilinear system form as given in (4.38) if we let 

0 1 0 0 0 

0 0 0 0 0 

I no 10 0" 

0 0 0 1 0 I 

0 0 0 0 1 

G = 
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0 0 1 0 0  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  

0 0 0 0 0  0 0 0 1 0  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  

0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  

0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  

0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  

and 

0 0 0 0 0 

0 0 0 0 1 

E = 0 0 0 0 0 

" 0 0 0 0 0 

0 0 0 0 0 

C = [1 0 0 0 0] 

We have used the notation in [14] for representing the bilinear form 

D, and E degenerated to an ordinary matrix since u(k) is a scalar. 

Let e = [w^(0), w^(0), rip rig, It can be easily seen that 

X 
0 =[w^(0), w^(0) + (ti^ + t12)w^(0) , tig, ri^J is a point in Q which is 

unresolvable from Q by the equivalent transformation. Hence the solution 

to the equation = 0 is not unique in and only local identifiability 

can be imposed on the parameters of systems (4.42). We applied the 

algorithm of Theorem 4.4 to this example with 6^=[0.5, 0.1, 0.3, 0.7, 

1.0]^. We note that 0^=[0.5, -0.1, 0.7, 0.3, 1.0]^ will give exactly the 

same set of j(k) sequence for any input sequence u(k) and hence is 

unresolvable from 6^. However, the distance from 0^ to 0^ is 0.4 by using 

the -L -norm. Therefore 0 and 0 are each locally identifiable in the 
CO -0 -1 
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spheres S(0Q,p) and S(9^,p) respectively where p <0.4. By applying 

Theorem 4.4 and the algorithm developed in the above section, we are able 

to find two spheres centered at 0^ and 6^ respectively such that 0^ and 

0^ are locally identifiable in those two spheres respectively. To 

demonstrate this situation, we use an input sequence u(k) =100 sin (kTT/4), 

for k = 0,1,—, 19, we found that with twenty observation, the sphere 

centered at 0. is of radius p = 0.21 and 
-0 

X = 0.1314XlO"^ 

T) = 0.3646 X 10 

Y = 0.2284X 10^ 

(i = 0.2124 X 10^ 

\ri = 0.0479 <0.0525 = p/4 

A.(2[j,P + Y) = 0.312 <0.5 . 

Thus the hypotheses of Theorem 4.4 are satisfied, and we conclude 

that 0 is locally identifiable in S(0 , 0.21) and the Gauss-Newton 
-0 0 

sequence will converge to 0^ starting from any point in the sphere 

S(0^, 0.105)o We also tested the conditions of Theorem 4.4 about the 

point 0^ and found that p = 0«31. Hence 0^ is locally identifiable in 

S(9^, 0„31) and the Gauss-Newton sequence will converge to 0^ starting 

from any point in the sphere S(0^, 0.155). 

Since Theorem 4.4 gives sufficient conditions for convergence, and 

because of the upper bounding implied by the use of interval analysis, the 

question of whether these results are overly conservative naturally arises. 
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However, this example illustrates that the computed sphere of convergence 

is of reasonable size in view of the distance from 9^ to 0^, i.e., the 

theoretical radius of the region of identifiability» 

The computer program for testing the conditions in Theorem 4.4 for 

the above specific example is listed in the Appendix, 
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^START^ 

READ: PQ, Ap > ^QJ 

/ 

, M, LIMIT 

> ' 

INITIALIZE: x(0) = 

r (Q ) BY EQ (4.24) 

\ f 
-1 

FOR k = 1 TO M 

COMPUTE: %(k) BY EQ. (4.11) 

r^(e ) BY EQ. (4.24) 

COMPUTE ^(G^) BY EQ (4.23) 

K.(ej BY EQ (4.19) 

DET %(ej 

%(@) SINGULAR? 

Figure 1. Flow Graph for Computing Regions of Parameter Identifiability 
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COMPUTE: 

LET: 

ITERATION = 1 

INITIALIZE: 

(4.9) COMPUTE: 

(4.12) 

-M 

(4.24) 

(4.27) 

Figure 1. Continued 
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COMPUTE: 
^ -M 

BY EQ. (4.23) 

BY EQ. (4.26) 

I N' 
M 

BY EQ. (4.35) 

^ % BY EQ. (4.17) 

I A BY EQ. (4.32) 

I B BY EQ. (4.34) 

Y RHS of EQ. (4.33) 

M- RHS of EQ. (4:37) 

n RHS of EQ. (4.31) 

\k 

Figure 1. Continued 
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NO YES 

PRINT p 

STOP 

NO YES ITERATION = LIMIT 

I 

STOP 

LET: 

ITERATION = ITERATION + 1 

w 

GO TO 0 

Figure 1. Continued 



www.manaraa.com

w„ (k) 
u(k) 

Figure 2. Block Diagram of System (4.42) 
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5. LOCAL PARAMETER IDENTIFIABILITY AND 
LOCAL CML PARAMETER IDENTIFIABILITY OF DYNAMIC 

SYSTEMS WITH MEASUREMENT NOISE 

In this chapter we will study the parameter identification problem 

of general discrete-time, multiple-input/multiple-output dynamic systems 

with measurement noise. Specifically, we will establish the concept of 

local parameter identifiability and provide a computation procedure for 

finding the explicit regions of parameter identifiability. Moreover, we 

will show that the constrained maximum likelihood estimation sequence 

converges to the locally identifiabile parameters with probability one. 

5.1 Local Parameter Identifiability and Local 
CML Parameter Identifiability 

Let [z.] be a sequence of random vectors, which we shall call the 
—1 1=0 

observations, with joint probability density function p(z.,—,z ; 6), 
u "M 

M = 0,1,2,—, parameterized by the unknown parameter OeficR^. R^ is the 

F M Ç ^ 1 xyA O 4» MA WV* ^ M • JI M W "T 
^ w *«. v ̂  j || ||y k/ w 

compact subset of R^. We let Z = (z ;Z ,—,s ), and we assume that the 
-M -0 -1 -M 

true parameter 0 lies in the interior of Q. Furthermore, we assume that 
-0 

p(Zj^;9) is continuous with respect to ©eQ for almost everywhere, i.e., 

for e >0 and 0eQ, there exists a 6(e) >0 such that for all 0'en wit?-. 

Il0-0'||<0 we have |p(Z ;̂0) -p(Z ;̂0')l <e for Z^ almost everywhere. 

Following Tse and Anton [19], we make the following definitions. 

Definition 5.1 

Two parameters 0 .0 eQ, 0 ^0 . are said to be unresolvable if the 
-1-2 -1 -2 

equality 
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P(Z^;8i)=P(Z;G^) (5.1) 

holds with probability one with respect to 6^ and 9^ for all except a 

finite number of integers n>0, i.e., for all except a finite number of 

integers n>0, (5.1) holds with respect to the measure P;9-,)dZ^^ as 

well as P(Z^^;9g)d^. 

Definition 5.2 

A parameter 9 eQ is said to be locally identifiable if there exists 

an open sphere S(9^.p) cQ with radius p >0 centered at 9^ such that there 

is no other 6eS(9 ,p), 9 9 , which is unresolvable from 9 . 
- ^0^ - -Q ~0 

The problem of constrained maximum likelihood (CML) estimation is 

as follows; find Ô eQ, an estimate of the true parameter 9 , where è 
-M -0 -M 

is such that 

P(Z &,) = Maxp(Z^;0), M = 0,1,2,— (5.2) 

9en 

Since u is closed and bounded and p(Z„;G) is continuous on Q for 
- ri — 

Z almost everywhere, a solution to (5.2) exists. However, if 9^ and 9 
M i- 2 

are unresolvable in Q, then they cannot be identified by the CML esti­

mation method constrained to 0. Therefore the following definition is 

established. 

Definition 5.3 

A parameter is said to be locally CML identifiable if there 

exists an open sphere S(9^,p) with radius p>0 centered at 9^ such that 

A Œ A 00 
the sequence ^ ^ converges to 9Q with probability one, where ^ 

is constructed by 
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P(Z ;êj = _Max P(Z ;6), M = 0,l,2, (5.3) 
M N tkS(Wy,p) M 

S(0^,p) denotes the closure of S(G^,p). We will call S(0^5p) given above 

the region of parameter identifiability. 

We now consider the problem of identifying the vector of unknown 

parameters, j], of a system whose state at time k is the vector w(k) where 

r wck)] 
k = 0,l,2,—, Let x(k) = and assume x(k) is a p-component vector 

[ ̂  
which we shall call the augmented state vector. Let the initial state 

w(0)l 
w(0) also be unknown, then J = x(0) = j is the parameter vector to be 

. 3 J 
identified. The identification problem is then equivalent to the initial-

state observation problem of the augmented system. We assume that the 

function ̂ (x,k) is known as a function of x and k and that 

x(k+1) =^(x(k) ,k) k=0,l,2, . (5.4) 

Observations of the state are taken which we will assume can be written 

in the form 

_y(k) =Cx(k) 

^(k) =_Y(k) + v(k) k = 0,1,2, . (5.5) 

where C is a known (rXp) matrix and v(k) is a Gaussian-white noise vector 

2 
with r components which has zero mean and covariane matrix Q=a I -

rxr 

a^<oo. The observation sequence of system (5.4) and (5.5) is 

\ S [ (0) (1) (M) 

and the joint probability density function is given by 



www.manaraa.com

97 

1 M T • 1 
p(z ;e) = Const. «expC-- S^(z(k) - Cx(k) ) Q (z(k) - Cx(k))](5.6) 

^ k=0 

where x(k) is the solution to (5.4) when x(0) = 0, and M = 0,1,2, —. 

We assume that the structure of _g(x,k) is such that the following 

assumptions hold. 

(1) The inputs to the system are known implicitly in^(x,k). 

(2) For every admissible input sequence and all QeQ, the states x(k) 

and the deterministic part of the observations, w(k), generated 

by 0 when applied with the input sequence are bounded. 

(3) £(x,k) is at least twice continuously differentiable with 

respect to 9, and hence so is p(Z^;9). 

5.2 Regions of Parameter Identiflability 

Let the assumptions given in Section 5.1 hold, and let us define 

M 
^ - Cx(k)]'^[z(k) - Cx(k)] 

ror M = u.I./. fh /I 

Then the CML estimation method in Eq. (2) is equivalent to finding 

Min M = 0,l,2,—. 
Gen ^ 

Following the notation in Chapter 4, we let 

f-

Cx(0) 

; 
Cx(M) (5 .8 )  

be the m-component vector where m = r(M+l)Sp and x(k) is the solution to 

equation (4) when x(0) =9« 
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Let 

and 

Then 

Y = 
-M 

V = 
-M 

1(0) 

l(M) 

v(0) 

v(M) 

V9)= 
"M 

s (6) = h (6) - Z . 
~M ~ ~M -M 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

1 T T /r\\ X _//\\ _ rr\\ L, yn ) - . ,— s vo/a vc; 
M — n-t- i —M M — 

/c 1 o\ V-" • -L-»/ 

Let 

Then 

* . 1 
4 (9)=] 1/(9). 
M 

and 

<e)" (5.14) 

(5.15) 
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We note that 

and 

Let 

ji® - i;® (5.16) 

(5.17) 

(5.18) 
M"- M+i--M 

By eqs. (5.5), (5.11), (5.12), and (5.13), 

371^4® 

or 

J„(2) = MTi4,\«)%(0) + (5.19) 

Let us define 

L*(9)= lim E[Lj^(0)]o 
M"* OD 

The following Theorem is a generalization of Aoki and Yue's Theorem given 

in [1]. 

ThenrAm 3 -1 

Let the assumptions given in Section 5.1 hold, 

* 
Then lim 1,(6) =L (0) for all QeQ with probability one. Furthermore, 

M - o o  ^  

1-*®- llm + (5.20) 
M-* 00 

Proof. By assumption (2), h^(9) has bounded elements for all 6sQ and 

has bounded elements. Hence ̂ (@) = ̂ (@) - has bounded elements for all 
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4,®' 

fi®) 

£,® 

Then there exists a K < c o  such that f (0) for all 6eQ and for all k. 
' k ' 

Thus 

M"* 00 00 

(5.21) 

Therefore the limit in (5.20) exists. 

Consider the second term on the right hand side of (5.19). Let 

\ 1 

V 

V = 
—M 

m 

m 

ïïTT['^M®»\r 5TÏ 
2 2 

Since EV^ = 0, EV^ =a for all k, applying Lemma Zwl.a to our 

situation, we have x ,= f (9)V, , b =M, and 
k k k' M 

E 
Ex œ f (G)EV 

k=l ^2 



www.manaraa.com

101 

Thus 

- m 1 ® 
—i- S X = _JL 2 f (0)V -» 0 with probability one. (5.22) 
M+1 k=l k k=l k  

Consider the third term on the right hand side of (5.19). 

1 T 1 ™ 2 
J- V V„= , S V, 
M+1 -M --M M+ 1 k=l k 

2 2 
Applying Lemma Z.l.b to this situation, we have = , E|x^| =EV^ = 

2 
rr <00. Thus 

^ S V -*Ta^ with probability one. (5.23) 
M+1 k=l k  

By (5.21), (5.22), and (5.23), the theorem is proved. 

If 0 is the true parameter, then L*(9Q) = ra^ = min L (9). The 

following theorem provides sufficient conditions for the existence of a 

"k 
sphere S(0^,p) such that 9^ is the unique minimal point of J (9) for all 

6eS(9^,p). The form of the theorem was motivated by the work of 

Pereyra [13]. 

We first recall that the ^2"Horm, or the Euclidean norm on the 

, 2  %  

space is defined by 

' for all xeR*. 

Theorem 5.2 

Let 11*11^ denotes the Euclidean norm. For brevity, let 

T 
Note that A A=N^^(9) which is an m x p matrix. 
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If (1) there Is a 0 efl such that f ,(9 ) =0 and hence 
-Q -M^O 

* + 
(2) N^(e) is nonsingular for all Mel , and 

(3) there is a sphere S(6Q,P)CQ with radius p>0 centered 

at 9^ and a set of positive numbers (^jYjIXjK) such that 

for all Mel"^ 

(0 , 

(ii) {.I i, ([.&] ,) 3 SK for all eeS'J ,p). 
1=1 ij 0 

(ill) for all eeS(e^,p), 

* 

(iv) 1|NĴ (6) 11̂  for all eeS(0,p), and 

(v) X(IJ,P+Y)<1. 

Then (a) 9^ is the unique point in S(9^,p) such that f (9^) =0 for all 

+ 1 T 
Mel and is the unique minimal point for lim ^ (§)J„(®) 

f A «m «. 1 4- y» TJ ^ ̂  r 7 n -»»-«• T f t)>dl i/ ûi\ _ ^ f/ A \ 11 ^ Q RI RCOUJ-U UW ua X. U J. C J.N LICI. U L'J J-O. J.J. |\Y \ V/ - W/ / ||  ̂

in S(9^,p). I.e., 0^ is the unique point in S(9Q,P) such that 

L*(G) =ra^ = L"(e^). 

(b) 9 is the unique minimal point for lim L (0) in S(0 ,p) with 
0 M-*co ^ 0 

probability one. 

* * 

for all 0GS(0Q,p), then ||^(G^) "- 6^) ||^ ̂  "fgH for 

all ê ,02GS(9̂ ,p) . In our particular case, ̂'(0) = N*(0) +-̂ [f̂ (@)]̂ f̂ (0) 

and =BM(eo). 

Thus ||è̂ '(9)-̂ *'(0̂ )112 ̂[ip-î-Y 0̂̂  all @eS(0Q,p) by 3(iii) and (iv). 

Therefore we have 
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Iliâ̂ (§l) - Qg) 11̂  ̂  (HP + Y) 116]- Ggllg 

for ail e^,e^eS(9Q,p). 

Now suppose there is another point @^GS, 6^ ̂ 6^, such that 

lira ̂  fj(e )4(e^) =0, 
M-* 00 

We can write 

We note that 

(6 ) and ̂  (Q) =0. Therefore 
M-Q 5l 0 

"̂ 0 • - II"»  ̂ ®̂o' " -o' "  ̂Il 2 

+ ll\"<«o>IIJI<®,)|l, 

^ \ (P-P + Y) 116^ - GGLL 2 + ̂ 11^Il 2 

< ll^o-^lll2+%M(^i)|l2 
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We now want to show that 

1 1 » 1 1 ^  =  0 ,  

But 

(M+1) 

^ [(wfi) lltJ^(«i)][iM®i>l'll2]lih V<2i>4®l'] • 

The final inequality follows easily from Schwarz inequality and properties 

of a norm, i.e. |x\x| ̂||x||J|'̂ ||̂ |̂|A||̂ '||x||̂ .̂ 

We now state a result given in [14 ]. If B is a p x P matrix, 

B = [b ], then ||B|I l (h )V. 
/. 1=1 J=1 1J 

Now look at 

T = AA 

where [AA']J . = 
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T m m P 2 
Thus ||AA 11̂  ] 

m m P p h. 

^i=l j=l k=l 

p P m m J 

 ̂̂ i!i j=i k=i 

P P m 2 ̂  

P P rp 2 % 
= (igi ) 

^ K for all 6eS(0^,p) and Mel^ by 3(11). 

Therefore 

L X. A.iU. 

M -• 03 

., ic ., 9 
nu..̂  I,*-- lU fo ~_n T.T,, 

^2^112 

l^„-illl<IÉ„-9lll 

which is a contradiction, and so we conclude 6 =6 » This completes the 
~1 ~0 

proof of part a. 

To prove part (b), we see that 

L̂ (0) -* L (G) with probability one for all GeQ 

* 
and L (6) <oo for all Qefi by Theorem 5.1. 
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L̂ (0q)-'L (0̂ ) with probability one. 

If then L (9) >L*(0^), therefore there exists a 6(6,0^) >0 such that 

!.*(&) - L*(Q̂ ) >6 >0 

Since L^(@)-*L*(6) with probability one, there exists a MQ(Ô) such that 

1Lj^(0) - L*(e) I <6/2 with probability one 

and 

11̂ (6̂ ) - 1 <6/2 with probability one for all M>M̂ (6) 

Thus 

I - L (G)) + (L̂ (8̂ ) - L C6Q)) | <6 with probability one. 

Now look at 

11 RI \j 

= ! (\(6) -L (e)) + L (6) - L (@o))| 

 ̂|L*(e) - I + I (L̂ (@) - L*(@)) . - L*(@Q)) I 

> 0 with probability one for all M>M^(6). 

This completes the proof of part (b). 

The above theorem gives explicit forms for the desired sphere S(§Q»p)» 

however, use of the Euclidean norm was needed in the proof of the theorem 

rather than an arbitrary norm. It is usually difficult to compute the 

indicated bounds using the Euclidean norm, and so we present in the 
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following theorem a set of conditions in terms of a more general norm. 

Again, let ||°||^ denote the Euclidean norm on the particular real vector 

space under consideration. We will say that any other norm, ||*|], is sub­

ordinate to II"Il2 if ll^ll ̂  H^sll^ for all x. We see that if we let xeR^, and 

define 

l|x|| = Max |x I, 
œ 1^ i^ P 

then II"II is subordinate to ||*j| „ This fact makes the computation of all 

the required bounds particularly simple if we use interval arithmetic [11]. 

Theorem 5.3 

Let ll'll^ denotes the Euclidean norm, and let ||»II be any norm which is 

subordinate to ||"|[^. 

If (1) there is a QeQ such that f ,(0 ) = 0 for all Mel"*" and hence 
-Q -M "0 

)V| -R CO 

(2) is nonsingular for all Mel"'", 

(3) there is a sphere S(0 ,p) with radius p >0 centered at 6̂  
0 0 

and a set of positive numbers such that for all 

+ 
Mel 

(10 for all %S(eq,p) 

for all 065(8^.P) 

(iv) ||N̂ (e)|| for all eeS(GQ,p) 
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(v) X(p,p+Y)<l 

Then conclusions (a) and (b) of Theorem 5.2 are true. 

Proof: As in the proof of Theorem 5.2, we suppose there is a 6^eS(9^,p), 

0 6 , such that 
-1  -0 

Hence, 

Since |['j| is a subordinate to 

M-» 00 /M+ 1 

Again we have 

I!e^,-e,ll<|le5-9,|| + ),|t(0,)|| tor all Mel 

Now look at 

Hence lim j[ = 0 

Therefore we conclude that 
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which is a contradiction, and so G, =6 . Part b is the same as in Theorem 
-1 -0 

5.2. This concludes the proof of the theorem. 

Now let S(0^,p) be a sphere such that 6eS(0^,p) and L (9) = L (0^) 

implies 9 = e.g. as provided in Theorems 5.2 and 5.3. Now consider the 

CML estimation problem: find 0 eS(9 ,n) as an estimate of G where è 
m ^0 ~0 -M 

is constructed by 

L ëj = _Min L®. M.0,1,2,— (5.27) 

" i€S(9„,p) " 

S(9^,p) denotes the closure of S(G^,p). 

A CO 
To show that {G f converses to G with probability one, we need 

M-'M=0 -0 

the following Lemma. 

Lemma 5.4 [Wald-Kendall-Astrom] [Aoki and Yue, 1] 

Let constructed by (5.2), then {G^}^_Q converges to 

G eQ''nn with probability one, where çi" is defined by 

Theorem 5.5 

. A 00 
Let S(G^,p) be given by Theorems 5.2 or 5.3 and let 1G^}^_q be con-

r ^ 
structed by (5.27). Then the CML estimation sequence converges 

to 9 with probability one. 

"k "k 
Proof: Since 8^ is the unique 0 in S(ô^,p) such that L (9) = L (0^) > 

Q ns(9^,p) = [G^] is a singleton. 

Hence the result follows immediately from Lemma 5.4. 
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Corollary 5.6 

Let S(0^,p) be the given in Theorem 5.2 or 5.3, then 6^ is locally 

CML identifiable. 

5.3 An Example of Computing the Region of 
Parameter Identifiability 

We now give an example to illustrate the algorithm of Theorem 5.3. 

Consider the system 

w^ (k+ 1) Til ^ Wj^(k) 
+ = + 

v^(k+ 1) 0 Tig 

. • 

Wglk) 

0 
u(k) 

y ( k )  = [ 1 0 ]  
*l (k)  

z(k) = y(k) + v(k) , k=0,l,2, 

v(k) is N(0;O^), <00. 

(5.28) 

The block diagram of this system is depicted in Fig. 3. The deter­

ministic part of this system is the same as system (4.42) hence by 

reversing the positions of —=— and —=—, and by transforming the initial 
z - m z - Ti2 

conditions by a similarity transformation, the resulting equivalent system 

will generate the same y(k) sequence. 

T 
Let G=[w^(0), #2(0), Ti^, . Recalling from Sec. 4.3. 

G =[y^(0), W2(0)+ (t]^ - r)2)w^(0), n^, T]^, Ti^] is a point in fi which is 

unresolvable from 0 by the equivalent transformation. Hence the solution 

to the equation _f^(@) = 0 is not unique in and only local identifiability 

can be imposed on the parameters of system (5.28). We applied the 
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algorithm of Theorem 5.3 to this example with 0^= (0.5, 0.1, 0.3, 0.7, 

T T 
1.0) . We note that 0^= (0.5, -0.1, 0.7, 0.3, 1.0) will give exactly 

the same set of y(k) sequence for any input sequence u(k) and hence is 

unresolvable from 0 . However, the distance from 0 to 0 is 0.4 by 
~0 ~0 -1 

using the norm ||'|| . Therefore 9^ and 9^ are each locally identifiable 

in the spheres S(0^,p) and S(0^,p) respectively where p <0.4. Using an 

input sequence u(k) = 100 sin (kTT/4) for k = 0,1,—, the following data 

listed in Table 1 are obtained. 

We see that uniqueness is guaranteed in a sphere of radius p = 0.33. 

We know the true radius to be p =0.4 in this example. Again, this 

example illustrates that the computed sphere of parameter identifiability 

is of reasonable size in view of the distance from 0 to G„. Moreover, 
-1  -0 

the region size obtained by applying Theorem 5.3 is larger than that 

obtained by applying Theorem 4.4 since condition 3(vi) of Theorem 4.4 is 

more conservative than condition 3(v) of Theorem 5.3. 
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T a b l e  1 »  R e g i o n  o f  p a r a m e t e r  i d e n t i f i a b i l i t y  o f  s y s t e m  ( 5 . 2 8 )  

N O o  o f  

O b s e r v a t i o n s  >.  p  y  u p  

20 
—  6  

0.1314 X10 
4  

0.9682X10 
7  

0.6828 X 10 
6  

0.2126X 1 0  0.285 0.905 

40 
—  8  

0.1554 X 10 
5  

0.8936 X 10 
9  

0.5226 X10 
6  

0.8136 X10 0.330 0.813 

60 
—  9  

0.2139 X 10 
6  

0.2737 X10 
1 0  

0.4047 X 10 
6  

0,5418 X10 0.330 C.866 

80 
-9 

0.2107 X10 
6 

0.2882 X :.0 
10 

0.2560 X 10 
6 

0.1854 X 10 0.315 0.539 

100 
-8 

0.2263X 1 0  
6 

0.1493 X -0 
9 

0.4018X10 
6 

0.1046 X 10 0.295 0.909 
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i(k) 

Figure 

v(k) 

Slock Diagram of System (5.28) 
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6. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

Concepts of local identifiability and local CML identifiablllty 

of parameters which parametrizes the joint probability density function of 

the observation sequence are established. They are applicable to the 

identification problem of control systems where there are stochastic 

disturbances present. The local least-square identifiability and the 

transfer-function identifiability of parameters of deterministic linear 

dynamic systems are also introduced. Sufficient conditions for their 

identifiability are provided. It has been shown that for single-input, 

zero-state linear systems, we are able to find a region containing the 

true parameter as an interior point such that the true parameters are 

both locally least-square identifiable and identifiable from the transfer 

function in the same region under certain constant rank assumptions on 

the impulse response matrix and the derivatives of the identification 

R» ̂  4 OF» 

By modifying Glover and Willema' theorem in [6], a theorem is given 

to show that if a system is of minimal dimension, the system parameters 

(including the unknovm initial state) are locally identifiable if it has 

unique equivalent system locally when the system is restricted to a given 

parametrization. 

A brief survey on the theory of solving nonlinear least-square prob­

lems, -t^-norm, and interval arithmetic is given. Employing these techniques, 

a least-square type identification algorithm for finding explicitly the 

regions of parameter identifiability of general linear deterministic 



www.manaraa.com

115 

dynamic systems is developed. A numerical example is included to 

illustrate this algorithm. 

By modifying Herget's result [7], a theorem providing sufficient 

conditions for local CML identifiability of parameters of general dynamic 

systems with Gaussian-white measurement errors is established. A com­

putation procedure is provided by the theorem for finding the regions of 

parameter identifiability. It has been shown that with probability one, 

the true parameter vector is the unique extremal point of the maximum 

likelihood function parametrized by the unknown parameter vector and the 

constrained maximum likelihood estimation sequence is consistent in the 

region of parameter identifiability. A numerical example is included to 

illustrate this computation procedure. 

The system parameter identification problem of Gauss-Markov stochastic 

control systems driven by plant Gaussian-white noise and observed with 

Gaussian-white noise is an an area of further endeavor. 

It has been shown the parameter identification problem of linear 

dynamic systems is equivalent to the initial-state observation problem of 

the quadratic-in-the-state bilinear systems. Hence the observability 

theory of quadratic-in-the-state bilinear systems needs to be studied 

more extensively. 

Since the sufficient conditions for parameter identifiability are 

sensitive to the input sequence, further work in the area of optimal 

input synthesis for system identification may prove fruitful. 
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9. APPENDIX 

This Appendix contains a listing of the computer program used to 

conduct the parameter identification example of the parameterized system 

given in Sec. 4.3. It has been written in Fortran language using double 

precision. 

If actual input/output measurement data are available, "GENERATE 

INPUT AND OUTPUT SEQUENCES" in this computer program should be removed. 

Proper dimensioning of the matrix arrays should be noted. 
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I M P L I C I T  C O M P . .  E X  ( A - G »  P - Q  II ,  F î E A L * 8 ( X - Y )  
o r  M E  N S  I O N  X A ( Î 5 « 5 ) , X B ( 5 , 5 t 5 ) , ; ( B S T A { 5 . 5 , 5 ) , X E ( 5 , 5 ) , X C ( 1 . 5 ) , ) < X ( 5 ) ,  

C X F  ( 2 , 2 ) ,  X G (  2  )  ,  X G A M M  (  5 .  5  ,  5 >  »  X < ; P  ( 5 . 5 . 5 )  .  X (  2 )  , X I N F Q ( 5 , 5 )  , Y ( 5 0 )  ,  
C X F P (  2 0  » 5  )  ,  X F P T  ( 5  , 2 0  )  ,  H L A (  5  )  ,  A ( 5  ,  5 )  . 6 ( 5 . 5 , 5 )  .  B S T A R (  5 . 5 ,  5 ) . C < 1 , 5 )  ,  
C G i > P (  5 . 5 , 5 ) , G ( 5 , 5 ) » G A  M M o (  5 , 5 , ; 5 , 2 1 ) , W ( 1 0 0 , 1 » , F E { 2 , 2 ) , G E ( 2 ) , F T ( 2 , 2 ) ,  
C G T  ( 2  ) .  E T  A E ( 2  )  ,  E T  A T  (  2  ) ,  A  X  C  5  )  .  A  Y E  (  3 0  )  .  A  Y T (  3 0 )  , G A M M A (  5 , 5 , 2 1 )  , D E  (  2  )  

D I M E N S I O N  O T ( 2 )  , C 2 E < 2 )  , 0 2 T ( 2 ) , G P ( 5 , 5 , 2 1  )  ,  G A M M ( 5 ,  5 , 5 , 2 1  ) , G G G (  5 , 5 , 5 )  
C ,  G G (  d .  5 )  , F P T (  2 0 ,  5  )  .  F P P (  2 0  ,  5  «  5 )  , F P P T (  5 ,  5 ,  2 0 )  ,  P H I  (  5 )  , H 1  ( 5 )  ,  P K ( 5  )  ,  
C F P P T F ( 5  , 5  )  o A D ( 5 )  , H D D  ( 5  )  ,  A N P  {  5 ,  5 ,  5 ) e A A ( 5 , 5 , 5 ) ,  A A T (  5 , 5 , 5 )  , H P K (  5 )  ,  
C A L  E N  { 5  , 5 )  ,  H L E N (  5 , 5 )  ,  H , <  (  2  »  , F (  3 0 )  , X 1 J (  3  0 )  , G A M M M {  5  , 5  , 5  , 2 1  )  , J  (  3 0  )  ,  
C X D l ( 2 l , X D 2 « 2 ) , L L { 5 ) , M M ( 5 î , A A ! V { 5 , 5 ) , F P ( 2 0 , 5 ) ,  A N O R M {  5 , 5 , 5 )  

H P  1 0  4 = 7 *  8 5 3 9 8 5 - 0  1  
X P  I 0 4  =  7 » 8 5 3 9 8 D - 0  1  
N P = 5  
N  S  =  2  
N C = 2 0  
X E P  =  l e  0 0 - 3 0  
X T = C  l O o O D  0 0  5 * * 2  
T - ( l  O o O E  0 0  ) * * 2  
X Y Z = D F L O A T H N O )  
X y t  =  3 l  c O D  0 0  

C  
C  C O M P U T E  L A M B D A  
C  
C  
C  S P E C I F Y  A  M A T R I X  
C  

D C  1 4 0  I  , N P  
D O  1 4 0  J = 1 , N F  

1 <  0  X A C I  ,  J ) = 0 o 0 D  0 0  
K A (  1  ,  2 )  =  l o  O D  0 0  
) C A ( 3 . 3 )  =  l e O D  0 0  
X A  (  4  ,  4  )  =  1  «  O D  0  0  
> t A ( 5  , 5  ) = a ® O D  O C  

C  
C  S P E C I F Y  B  A N C )  B S T A R  M A T R I C E S  
C 
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DC 1  21 I =1 »MP 
D O  1 2 1  J = 1 t M P  

D O  1  2 1  K = 1  ,  N P  
121 XB(  I  ,  J  ,K  )=0«  OD 00  

K E ' Î Î  » 1  . 3  ) = 1 „ 0 D  0 0  
X B  E  2  « 2  . 4  )  = 1  O D  0 0  
Cn 122  1=1 
DO 1  22 J=1 ,NP 
DO 1  22  K=1 . rap  

1 22 XBST A{  I ,  J ,  K » =  X B( I»K J  )  
C 
C SPECIFY E MATRIX 
C 

DC 1  41 I  =1 . T > L P  
D O  1 4 1  J = 1 , N P  

141 XE( I ,J )=0»00 00  
XE(2 ,5 )=1 .0D 00  

C 
c S P E C I F Y  C  M A T R I X  
c 

DO 1  42 1=1,  MP 

1 4 2  X C ( 1  « I  ) = 0 * O D  0 0  
xc( i , i )  =  a»oo 0  0  

c 
C  S P E C I F Y  T R U E  D A T A  
c 
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D O  1 2 0  i < = 2 « r m  
L l  = K - 1  
X U l T L i )  = D S I N (  X P I 0 4 * D F L 0 A T ( L 1  - 1  )  ) * X T  
C A L L  M A T V E C C X F » X , X D 1 . N S « V S :  
D O  2 0 1  I  -1 , N S  
X D 2 (  I ) = X U { L 1 1 ) * X G C I )  
C A L L  M A T A D D i : X D l  « X D S - j X o N S . l  I  
Y( K ) =X{ a ) 
X X  î 1  )  =  X Î  1  )  
X X  d  2  >  = X { 2 )  

G E N E R A T E  G  P R I M E  M A T R I C E S  

0 0  1 2 4  I = 1 , N P  
D O  1  2 4  J = 1  .  N P  
X G P (  I  » J t K )  = 0 ®  O D  0 0  

D O  1  2 5  N = 1  , M P  
i 2 5  X G P (  I , J o K )  =  X G P ( I o J , K ) + ( X B ( ] , J , N ) + X B S T A ( I , J , N ) ) * X X ( N )  

X U ( L l )  = D S I  N (  X P I 0 4 * D F - L 0 A T ( L 1  »  )  
X G P (  I . J ,  K  )  =  ) C G P (  I  ,  J .  K  » + X U { L l  )  * X E  ( I , J )  * X T + X A (  I , J )  

1 2 4  C O N T I N U E  
C  
C  G E N E R A T E  G A M M A  M A T R I C E S  
C  

D O  1 3 0  E= 1 , N P  
D C  1  3 0  J = 1  . M P  
X G A M M ( I , J , K ) = 0 « 0 D  0 0  
D O  1 3 0  N = 1 , M P  
X G A M M (  I  o  J .  K )  = X  G A  r v M (  I  .  J ,  K  »  G P {  I  ,  N .  K - 1  ) * X  G A M M  <  N  .  J  ,  K -  1  )  

1 3 0  C O N T I N U E  
1 2 0  C O N T I N U E  

D O  1  7 0  I  = 1  . N O  
D O  1 7 0  J = 1 . M P  
X E P (  I  ,  J I )  = 0 ® 0  D  0 0  
D O  1 7 0  N = 1 , N P  
X F P (  I  ,  J  5  = X F P  (  I  ,  J  ) + X C ( l . N ) * X  G A M M  ( N ,  J . I )  

20 I 

C  
C  
c 
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1 7 0  C O N T I N U E  
P R I N T  5 5 5  

5 5 5  F O R M A T d  H I  » •  " H E  F  P R I M E  M A T R I X " / / )  
O O  6  6 6  1 = 1 , N O  

6 6 6  P R I N T  2 7 0 ,  {  ) ( F P  (  I ,  J  »  ,  J  =  1  , N P  )  
C  
C  G E N E R A T E  I N F O R M A T I O N  M A T R I X  
C  

C A L L  T R N S P Z (  : < F P ,  > F P T . , N O , N P )  
C A L L  M A T M L T  O C F P T  « X F P  ,  X  INFO. MP, N O , N P )  
P R I N T  4 8 0  

4 8 0  F O R M A T C I H I , " T H E  N  M A T R I X ' / / !  
D O  4  6 1  1 = 1 ,  N P  

4 8 1  P R I N T  2 7 C ,  {  X I  N F  O i  I  ,  J  )  ^  J  =  1  ,  N P  )  
D O  7  8 1  1 = 1  , N f >  
D O  7 8 1  J = 1  , N P  
X I N F O (  I ,  J )  =  X : [ N F O ( I ,  J  ) / X W  

7 8 1  C O N T I N U E  
C A L L  M A T I N V (  ; < I N F O , N P  , N P v  X E P  ,  D E  T E R ,  &  9 9 9 )  
P R I N T  2 5 0  

2 5 0  F O R M  A T {  •  0 "  T H E  I N F O R M A T I O N  M A T R I X " / / )  
D O  7 8 2  1 = 1 , N P  
D C  7  8 2  J = 1  , N P  
X I N F O (  I  ,  J )  = X  t N F O  <  I  .  J  )  / X V /  

7 8 2  C O N T I N U E  
D O  2  6 0  I  = 1  , N P  

2 0 0  P R I N T  2 7 0 ,  (  X  I  N F  O  (  I  ,  J  )  ,  J  =  1  ,  )  
2 7 0  F O R M A T S "  • , 5 X , 5 D 1 5 « 7 )  

D O  3 0 0  1 = 1 , N P  
H L A (  I > = 0  « C  
D C  3  0 0  J = 1  , N P  
Z = X I N F O ( I , J )  
H  =  A B S <  Z )  
H L A {  I  ) = H L A (  I ) + H  

3 0 0  C O N T I N U E  
H L A M = 2 o 0 * A M A X l  ( H L A d  )  , H L A ( 2  )  ,  H L A ( 3  )  ,  H L A (  4  )  ,  H L A (  5  )  )  
H L A M = X Y Z * H L A M  

P R I N T  73 7V H L A M  
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7 3  7  F C R M  A T  C O '  . «  L A y 8 C A  =  «  , E 1  5 . 7  »  

S P E C I F Y  A  M A T R I X  I N  I N T E R V A L .  F O R M  

D O  2  0  1 = 1 . M P  
D O  2 C  J = S , N P  

2 0  A ( I  ,  J )  = C  M P L X (  0 ® 0  » 0 o  C  )  
A ( l ,  2  > = C M P L X  ( 1 * 0 , 1 * 0 )  
A  ( 3 .  3 )  = C  W P L X  ( 1 * 0  o l . C )  
A (  4 ,  4 )  = C  M P L X (  l o  O  •  l e  0  }  
A ( 5 . 5 ) = C  M P L X  ( Ï  . 0 , 1 . 0  )  

S P E C I F Y  B  A N D  B S T A R  M A T R I C E S  I N  I N T E R V A L  

D O  1 6  1 = 1 , N P  
D C  1 6  J = 1 , N P  
D O  1  6  K = 1  * N P  

1 6  B (  I ,  J , K ) = C M P L X ( 0  » 0 , C o O )  
B ( 1 . 1 , 3 ) = C M P L X ( 1 « 0 , 1 * 0 )  
B (  2 .  2 ,  A )  = C M P L X <  1  « 0 . 1 * 0 )  
D C  1 5  1 = 1 , N P  
D O  1 5  J = 1 , N P  
D O  1 5  K = 1 « N P  
B S T A R ( I , J . K ) = B ( I , K , J )  

1 5  C O N T I N U E  

S P E C I F Y  G  D O U B L E  P R I M E  M A T R I X  

D O  1 7  1 = 1  -  N P  
D O  1 7  J = 1 , N P  
D C  1 7  K = 1 »  N P  
C A L L  I N T A D D ( B ( I ,  J , K )  . B S T A R  C I n J . K ) ,  C I  )  

1  7  C - D P (  Ï, J .  K  ÎI= C  1  

S P E C I F Y  E  M A T R I X  I N  I N T E R V A L  F O R M  

•  R M  

Ln 
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D O  1 9  1 = 1 . N P  
D O  1 9  J = 1 . N P  

1 9  G C  I  5  J )  = C r / P L X  (  0  ® C  t O e O  ; i  
G(  2 « 5)  =C IVPLX (  2  «0 «î  •  0  !)  

C  
C  S P E C  I I - Y  C  M A T R I X  I N  I N T E R V A L .  F O R M  

C  
D O  9 9 1 = 1 , N P  

99 C (  1 o I) =CÎVP Î _ X ( : 0 « 0  aOaO J  
C C  Î P  1 )  = C M P L X (  1 . 0 , l « 0 j  

C  
C  S P E C I F Y  G A M M A  0 .  G A M M A  1 »  G / \ M M A »  0 ,  

C  
R E A D  ( 5 , 7 4 7 )  R H C , H D E T A  

7 4 7  F O R M A T ( 2 F 1 0 » 0 )  
W { 1 9 1 ) =0 9 0 
2,1 ) =0» 0 

OO 6 00 NN=3. ;3  

« H O  =  R H O - H D E T  A  
' « C N N  . 1  ) = R H O  
R l = 0 ® 5  
1 3  2 = 0 . 1  

F E ( %  ,1 ) = C M P L ) ( (  Oo 3 - R H O  , 0  « 3 + R H 0 )  
F E (  1  , 2 )  =  C M P L X (  1 , 0 ,  l o O )  
C - E < 2  , 1  >  = C M P L > C ( 0 «  0  , 0  « 0  )  
F E (  2 . 2  > = C M P L ; < (  0» 7 " R H O , 0 «  7 + R H O )  
GE (1  )  =  CMPLX ( ( !»0,  OoP )  

G E ( 2  ) = C M P L X (  1 *  O - R H O  ,  : l  o C  +  R H O :  
E T A E d  Î = C M P L ) C (  R  1 - P H O  j  R  Î + R H O  i  
E T A E  ( 2 )  = C M P L ) C  (  R 2  - R H O  ,  R 2  - e - R H O  )  
S-T(îl ,1 ) = CMPLX( Oo 3,0* 3) 
F T  ( I l  , 2  i = C M P L X {  1  , 0 , 1  , 0  )  
F T <  2  , 1  > = C M P L X (  0 ®  0  , 0 ®  C )  
F T  ( 2  , 2  )  =  C M P L ! ( (  0 , 7 , 0 ,  7 )  
GT(a ) =CMPLX( Oo O,  OaO )  

G T  (  2  )  = C M P L  X (  : i  •  0 ,  l o  0  )  

AND GAMMA' 1 MATRICES 
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E T * T  ( 1  9  = C M P ' L X  (  R 1  ,  R 1  )  
E T A T ( 2 5 = C M P L X (  R 2  , R 2 )  
A X  ( 1  ) = E T  A E (  1  )  
A  > : ( 2  )  = E T A E  ( 2  )  
A X ( 3 )  =  F E ( 1  , 1  )  
A X ( 4  ) = F E ( 2  , 2  )  
A X (  5 )  =  G E ( 2 )  
A Y E (  1  ) = E T A E : (  1  )  
A  Y T {  i  )  = E T A T (  1  )  
C A L L  I N T S U E ( A Y E ( 1 ) , A Y T ( 1 ) , A C )  
F ( 1  >  = A C  
D O  2 1 0  I = 1 , N P  
D O  2 1 0  J = 1 » N P  
IF ( 1« BQa J> GO TO 21 1 

G A M M  A (  I » J . l  ) = C M P L X { C « 0 , 0 € > 0 )  

G O  T O  2 1 0  
2 1 1  G A M M  A {  I  o  J ,  1  )  = C M P L X (  1 «  0 »  l e  0  )  
2 1 0  C O N T I N U E  

D O  6  1 = 1 ,  N P  
D O  6  J= 1 . N P  
G A M M  A {  I  «  J , 2  )  = C  M P L X  ( 0  e O  o  0  « 0  )  
D O  8  L  =  l .  . N P  
C A L L  1  N T  M U L (  B (  I  ,  J , L  >  .  A X  ( L  » .  C I  )  
C A L L  I N T A D D ( G A M M A { I  , J , 2  >  , C 1  , C 2 )  

e  G A M M A (  I  «  J ,  2 Ï  = C 2  
D O  9  L = 1 , N P  
C A L L  I  N T  M U L (  B S T A  f i (  I  ,  J  , . U  )  .  A X  ( L )  .  C I  »  
C A L L  I N T  A D D {  G A M M A {  I  ,  J .  2 )  , C 1  . C 2 >  

9  G A M M A (  I  0  J » 2 ) = C 2  
C A L L  I N T A D D (  A {  I  ,  J )  . G A M M A  (  I  .  J , 2 )  . C I  
G A M M A t  Î .  J »  2 »  =  C 1  
C 3 = G  ( I , J  ) * 0 o  0  
C A L L  I N T A D D ( C 3 . G A M M A ( I Ç J . 2 ) , C 2 )  
G A M M A C I , J , 2 » = C 2  

6  C O N T I N U E  
D C  2 1  1 =  a , N P  
D O  2  1  J = a . N P  
D O  2  1  K = % , N P  
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G A M M P (  r t J  ,  K,1 )  = C  » / P L X  ( 0 . 0,0* 0  )  
G A M M P (  I  ,  . 1  ,  K ®  2 )  = G D P (  I  ,  J  ,  K  >  

G E N E R A T E  H  A N D  F  M A T R I C E S  

D O  1  0 0  K = 2  »  N O  

L l  = K - 1  
U ( L 1  )  =  S I  N (  H P ' I  0  4 *  F L O A T {  L l - 1  )  | i * T  
D C  1  1 = 1 . N S  
D E  (  I  )  = C M P L X <  0 »  0  Î  0 ® 0  1  
D T  (  I  Î  =  C M P L X (  0 « 0 ,  D o O  1  
DO 1  KK =  1  » N S  
C A L L  I N T M U L ( F E (  I  , K K )  , E T A E (  K . K )  » C 1  )  
C A L L  I N T M U L C F T  (  I  , K K  )  ,  E T  A T  (  K  K  ) , C 2 )  
C A L L  I  N T A D D (  D E  <  I  )  , C 1 ,  , C 3  >  
C A L L  I N T A D D < D T ( I ) , C 2 , C 4 >  
D E ( I ) = C 3  
D T ( I Î = C 4  
CO NT ÎNUE 
D O  2  I  = 1  , N S  
D 2 E (  I > = U ( L 1  I  : 4 : G E (  I  >  
D 2  T  (  I  )  = U ( L 1 ) * G T (  I  >  

C O N T  Î N U E  
DC 3  1=1,NS 
C A L L  I N T A D D i :  D E  (  I  )  » D 2 £ {  Ï  )  » C : .  )  
C A L L  Ï N T A D D  ( D T  {  I  » ,  D 2 T (  I  )  »  C : 3 )  
E T A E < Î  )  = C 1  
E T A T  ( Î  )  =  C 2  
C O N T I N U E  
A X (  1  )  =  E T A E (  I  t  
A X  ( 2  ) = E T A F  ( 2  )  
A Y E {  K )  = C  J / P L K (  0 . 0  , 0 . 0 )  
D O  3 0 1  1 = 1 , I M P  
C A L L  I N T M U L C C d  ,  I )  ,  A X (  I  » , C l  J  
C A L L  I  N T A D D (  A Y E (  K )  « C  1  , C 2  )  
A Y E (  K ) = C 2  
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3 0  1  C O N T I N U E  
A X (  1  )  =  E T A T ( 1  )  
A X  ( 2  ) = E T  A T  ( 2  >  
A Y T ( K )  = C M P L X ( O e O  , 0 »  0 )  

D G  3 0 2  1 = 1 , N P  
C A L L  I N T M U L ( C ( 1 . I ) , A X ( I ) , C l )  
C A L L  I N T A D D f  f i i V T (  K ) , C 1 . C 2 »  
A Y T ( K ) = C 2  

3 0 2  C O N T E N U E  
C A L L  I N T S U B ( A Y E ( K ) , A Y T ( K ) , C 1 )  
F ( K ) = C S  

G E N E R A T E  G «  A N C  G A M M A  M A T R I C E S  

D O  5  0  1 = 1 , N P  
D O  5 0  J  =  1  9  N P  
A X {  1  )  =  E T A E (  1  )  
A X { 2  D = E T A F ( 2  )  
G P (  I  +  l  ) = C M P L X ( 0 «  0 , 0 * 0 )  
D O  5  I I  L =  1  »  N P  
C A L L  I N T W U L (  B C I  ,  J » L )  » A X  ( L )  , C l  )  
C A L L  I N T A D O ( G P ( I « J , K  +  l ) , C l , : 2 )  

5 1  G P  t î  f J U K + l  )  =  C 2  
D O  5  2  L = l o N P  
C A L L  I  N T M U L  ( B S T A R ( I . J , L  D ,  A X ( L ) , C 1 )  
C A L L  I N T A D D ( G P ( I , J , K + 1 ) , C 1 « C 2 >  

5 2  G P ( I « J , K + i  )  =  C 2  
G G t  î  , J ) = S I N (  H P  1 0 4  A F L O A T  (  L 1  )  )  * 6  (  I  ,  J  )  * T  

C A L L  I  N T A D D C G G  ( I  «  J )  .  G P < E , J , K + 1  )  9  C 2  )  

G P { ï  .  J . K  +  î ) = C 2  
C A L L  Î N T  A O D (  A (  I ,  J  )  ,  G P (  I , J , K H ) , C 2 )  
G P { ï  .  J  , K  +  1 ) = C 2  

5 0  C O N T I N U E  
D C  1  1  1 = 1 , N P  
D O  1 1  J  =  1  , N P  
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G A M M A {  I ,  J ,  K + l  f  =  C M P L X  ( 0 * 0 , 0 ,  ) )  
D O  1 1  L = 1  »  N P  
C A L L  I N T M U L ( 3 P ( I  .  L  .  K  +  1  )  „  G  A M  M  A  <  L  .  J  «  K  )  . C I )  
C A L L  I N T  A D D { G A M M A (  I  ,  J ,  1 < + 1  )  ,  " 1  ,  C 2  )  
G A M M A (  I ,  J , K +  1  ) = C  2  

1 1  C O N T I N U E  
C  
C  G E N E R A T E  G A M M A  P R I M E  M A T R I C E S  
C  

O O  2  9  1 = 1 , N P  
O O  2  9  J = 1 , N P  
D C  2  9  L  =  1  ,  N P  
G A M M  ( I  «  J  , L  . K - H  1  )  =  C M P L  X (  0 « i  0 »  O o  0 )  
D C  2 9  M =  I  ,  N P  
C A L L  I  N T M U L ( G D P {  Î  .  J , M )  ,  G  A  M M . X  (  M  ,  L  ,  K  )  •  C I  )  
C A L L  Î N T  A D D (  G A  M M  O  .  J  >  L  d  K  +  I  >  C I  ,  C  2 )  
G A M M  ( I  ,  J  ) = C 2  

2 9  C O N T I N U E  
D C  2 2  1 = 1 , N P  
D O  2 2  J - 1 , N P  
O O  2  2  L = 1 , N P  

2  2  C 3 A M M (  I  «  J  , L .  K ^ - 1  )  =  G A M M  (  I  ,  L  ,  J  ,  K M  »  
D O  2  3  1 = 1 ,  N P  
D C  2 3  J = a , N P  
D O  2  3  L  =  a  , N P  
s 3 A M M M (  I , J , L ,  K + l )  = C M P L K (  O e O ,  ( ) < » 0 )  
D O  2  3  M = a  ,  N P  
C A L L  I N T M U L ( G A M M ( Ï , J  «  M , K  +  1  )  , G A M M A ( M , L , K )  
C A L L  I  N T  A D D ( G A M M I , J , L , K  +  1  , C 1 , C 2 )  
G A M M  M (  I  ,  J  ,  L  »  K +  1  )  = C  2  

2 3  C O N T I N U E  
D O  2  4  I  = ' i  ,  N P  
D O  2 4  J = 1 , N P  
D C  2  4  L = 1  . N P  
G G G (  I .  J ,  L )  = C M P L X  (  0 .  0  « O o  0 )  
D O  2  5  M = 1 , N P  

t-* 
LO 
O 

1 ) 



www.manaraa.com

C A L L  I  N T  M U L (  G P  (  I  ,  M ,  K + 1  )  o  G  A M  M  P  (  M  ,  J ,  L  .  K  )  .  C 1  >  
C A L L  I N T  A D O (  G G G (  I  ,  J  .  L  )  ,  C I  , C  2  >  

2 5  G G G {  I » J , L D  = C 2  
C A L L  I  N T A D D (  S A M M  M (  I  ,  J , L  t .  K + 1  )  . G G G  (  I  ,  J , L ) . C 1  )  
G A M M P ( I . J « L . K + 1 ) = C 1  

2 4  C O N T E N U E  
1 0 0  C O N T  I N U E  

G E N E R A T E  F  P R I M E  A N D  F  D C U B _ E  P R I M E  M A T R I C E S  

D C  3 0  1 = 1  o  N O  
D O  3  0  J = 1 , N P  
F P ( I , J ) = C M F L % ( O e O , O a O )  
D O  3  0  L = 1  ,  N P  
C A L L  I N T M U L ( C (  1 ,  L > . G A M M A < L ,  J » I  )  » C 1  )  

C A L L  I N T A D D t  l - P (  I  » J  )  . C I  , C 2 )  
3 0  F P ( I  9  J ) = C 2  

D O  3 1  1 = 1 , N O  
D O  3  1  J = 1 . N P  
D O  3 1  L = 1  *  N P  
F P P (  I ,  J ,  L  î = C m P L X  ( O o O  , 0 »  O  )  
D O  3  1  M  =  1  ,  N P  
C A L L  I N T M U L ( C {  1  »  P / )  , G A M M P ( M ,  J . L . I  ) , C 1 )  
C A L L  I N T  A D D (  F P P {  1 ,  J ,  L ) .  C I  ,  C  2  5  
F P P (  I  ,  J ,  L )  = C 2  

3 1  C O N T Ï Ï N U E  
D O  3  2  1  = 1  D  N P  
D O  3  2  J = 1 . N P  
D C  3  2  L = 1 . N O  

3 2  F P P T (  I  . J  » L  )  = I - P P (  L . I  .  J )  
D O  3  3  1 = 1 , N P  
D O  3 3  J = 1 « N O  

3 3  F P T (  Ï . J ) = F P (  J ,  I )  

C C M P U T E  K  
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D O  4  9 8  I  = 1  » N P  
P K ( I  ) = C M P L X ( 0 »  0 , 0 * 0 )  
D C  4  9 9  J  =  1 , N C )  
C A L L  I  N T A B S ( F P T {  I  9  J )  . , C 1  )  
C A L L  I N T A D D (  C ; l  , P K C  I  > , . C 2  )  

4 9 9  P K  ( I  ) = C 2  
P Z=PK( I  )  

4 9 3  H P K (  I  > = A Ï M A G { P Z )  
H Q = A  W A X l  C H P K (  1 )  ,  H P K  ( 2 :  )  ,  H P K  ( 3  )  ,  H P K  ( 4 ) ,  H P K  ( 5  )  )  
H Q  =  H Q / D S Q R T (  X Y Z )  

P R I N T  5 0  Î .  , H Q  
S O I  F O R M A T (  ' O  •  T » K = •  . E l 5 o  7 )  

C O M P U T E  E T A  

D O  3  5  1 = 1 .  N P  
P H I  «  I  )  =CYPLXr0*0 « 0 ®  O  ) 
D O  3  6  J = l ,  N O  
C A L L  l N T M U L ( r P T (  1  »  J  )  ,  F (  J  )  ,  C  5 .  )  
C A L L  I N T A D D ( f > H I (  Ï Î  » C : l  , C 2 )  

3 6  P H I ( I 5 = C 2  
C A L L  E N T A B S d ^ H I  (  1 5  , C ; n  
P H K  I  ) = C  3  
A Z = P H I ( I )  

3 5  H I { ! ) = A I M A G ( A Z )  
i - ' E T A = A M A  X I  (  H ; 1  (  1  )  , H 1  (  2 )  ,  H Î  (  3  !  , H 1  (  4 )  ,  H  1 (  5 )  )  
H E T A  = H E T  A / X Y  Z  

P R I N T  7 3 8 , H E T A  
7 3 8  F O R M A T  C O *  , '  ! E T A =  » , E 1 5 « 7  )  

C O M P U T E  G A M M A  

D O  3  7  1=1.N P  
D O  3  7  J = Î . N P  
F P P T F (  I  .  J )  = C  V P L X  ( 0 ® 0  , 0  o O  )  
D O  3 7  L = l «  N O  
C A L L  I N T M U L (  = P P T  ( I . J , L ) q F ( L  ) , C 1  )  
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C A L L  Ï N T  A O D (  F P P T  F (  I ,  J  ) ,  C l  ,  C 2  )  
F P P T F  - Î  I  ,  J )  = C 2  

3 7  C O N T I N U E  
D O  3  8  1 = 1 , N P  
A D {  I  ) = C M P L X (  0 »  0 ,  C o  0 ? '  
D O  3 9  J = 1 » N P  
C A L L  Ï  N T A B S ( F P P T F ( I  J )  , C a  )  

C A L L  I N T A D D ( C I  . A D C  I  > , C 2 )  
3 9  A D C I )  = C 2  

A Z = A D (  I  )  
3 8  H D D (  I  > = A I M A G ( A Z )  

H G A = A M A X 1 ( H D D ( 1 )  » H D D C 2 ) « H O D ( 3 ) , H D D C 4  
H G A = H G A / X Y Z  

P R I N T  7 3 9 , H G A  
7 3 9  F O R M A T C  »  0 ®  . ' G A M M A  =  »  , E 1 5 » 7 )  

C 
C  C O M P U T E  K 2  
C  

D O  6  0  1 = 1 ,  N P  
D O  6  0  J  =  1  t  N P  
D O  6  0  N = l o N P  

A N P C  I » J . N )  =  C M P L X  C O c O . O o O  )  
D O  6 0  L = 1 , N P  
C A L L  I N T M U L C F P T C I t L ) , F P P { L . J t N ) , C 1 >  
C A L L  I  N T  A D D (  ̂ N P C  C 2  1 '  
A N P C  I  .  J  .  N )  = C  2 :  

6 0  C O N T  I N U E  
D C  6 1  1 = 1 , N P  
D O  6 1  J = l o N P  
D O  6  1  N = 1  ,  N P  
A A C  I  »  J  , N  l i = C M P L  X (  C «  0  T  C o  C  )  
D O  6  1  L = I  0  N P  
CALL I  N T M U L C  F P P T  C  I  »  J  ,  L )  ,FPC L  N )  ,  CI  )  
C A L L  I N T A D D C  A A C  I . J . N ) , C I . C 2 )  
A A C  I  ,  J  ,  N  ?  =  C 2  

H D D C 5  )  )  
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6 1  C O N T I N U E  
D O  6 2  1 = 1 , N P  
D O  6 2  J = 1 , M P  
D O  6 2  N = 1 , N P  

6 2  A A T ( I . J 9 N » - A A ( N , I , J )  
D O  6  3  1 = 1 , N P  
D O  6 3  J = a , N P  
D O  6 3  N = 1 , N P  
C A L L  I N T A D D ( A N P {  I , J , N ) , A A T ( I , J . N ) , C 1 )  
A N P (  I  ,  J ,  N )  = C 3  

6 3  C O N T I N U E  
D C  7  0  N = a . 2  
I F  €  N »  E Q o  2 )  G O  T O  7 1  
D O  7  2  1 = 1 ,  N P  
D O  7  2  J = â  ,  N P  
I F  C  l o  E Q »  J )  G O  T O  7 3  
AAAS 1, Jî =CMPLX (-1*0,1*0) 
G O  T O  7 2  

7 3  A A A (  I ,  JD= C M P L X (  1  ® 0 ,  î«OIi 
7 2  C O N T I N U E  

G O  T O  7 7  
7 1  C O  7 4  I = a , N P  

D O  7  4  J=a , N P  

I F  (  I »  E Q »  J 3  G O  T O  7 5  
A A A (  î ,  J > = C M P L X { - l e O  «  l e O )  

G O  T O  7 4  
7 5  A A A (  I ,  J > = C M P L X ( - l o O , - l i »  O J  

7 4  C O N T I N U E  
7 7  D O  7  8  L = a , N P  

D O  78 1=1,N P  
D O  7  6  J = l l  ,  N P  
A N O R M (  I ,  J ,  L > = C M P L X {  0 « 0 ,  0 »  0 )  
D O  7  8  K  =  î  . N P  
C A L L  I N T M U L t  A N P (  I , J , K )  , A A A ( L . K ) , C 1  )  
C A L L  I N T  A D D (  A N O R M (  I  ,  J ,  L  )  ,  C  1  «  C 2 >  
A N O R  M ( I  , J , L )  = C 2  
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7 8  C O N T I N U E  
D C  7 9  5_=1 T N P  
D O  7 9  1 = 1 t N P  
A L E N  (  I  , L  >  =  C M P L  X (  0 * 0 , 0 * 0 )  
D O  8 C  J = 1  »  N P  
C A L L  I N T A B S (  AfMORM( I  .  J i L  Î  » C 1  )  
C A L L  1  N T  A D D Î  A L E N  {  ï  o L  )  .  C I  9  C 2  )  
A L E N  C I  , L ) = C 2  

8 0  C O N T  I N U E  
7 9  H L E N ' Î  I  « L ) = A I  M A G  <  A L E N  (  I  ,  L  )  )  

H I v î N  } = A M A X 1 ( H L E N  ( 1 , 1  )  «  H L E N  (  1  )  , H L E N (  1 , 3 )  , H L E N { Î  , 4  )  , H L E N (  2 . 1 ) ,  H L E N  
C { 2  , 2  ) »  H L E N ( 2 ,  3  ) ,  H U E N ( 2 , 4  ! ) ,  H L E : N (  3 ,  I  ) ,  H L E M <  3 ,  2 )  ,  H L E N  (  3 ,  3 )  , H L E N (  3 . 4 ) .  
C H L E N ( 4 , 1  ) , H L E N ( 4  . 2  3  , H L E N ( 4  . 3  , H L E N ( 4 , 4 ) )  

K C  ( N  > = A M  A X l  (  H K ( N  » ,  H L E N (  1 »  5 )  . M L E N (  2 ,  5  )  ,  H L E N (  3  ,  5  )  ,  H L E N C  4  , 5  )  « H L E N ( 5 , 1  
C  )  « H L E N C  S  . 2  )  . H L E N  < 5  .  3  )  .  H L E N  (  5  .  4  )  .  H _  E N  ( 5  , 5  >  >  

7 0  C O N T  I N U E  
H K 2  =  A M A X 1  (  H K C l  1 )  ,  J - K (  2  )  >  
H K 2 = H K 2 / X Y Z  

P R I N T  7 4 0 . H K 2  
7 4 0  F C R M A T {  •  O *  o *  K 2 = "  , E 1 S « 7 )  

S P E C I F Y  T H E  S T O P P I N G  C R I T E R I O N  

H L = H L A M * H E T A  
H B O = H L A M * ( 2 c  0 * H K 2 « R H G + H G A )  
R H 0 4 = R H 0 / 4 * 0  
I F  Î H L ®  G T «  R H 0 4  )  G O  T O  6 0 8  
I F  ( I  H B O o  G T *  0 * 5 )  G O  T O  6 0 6  
I F  ( W ( N N . l ) *  E Q o  W ( N M - 2 . 1 ) )  C i O  T O  4 0 0  
R H O  =  R H O + 2 o  0 * H i D E T  A  
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608 MK=NN-2 
PRINT 60 2. 

6 0 2  F O R M A T ( ' 0 ' , ' I  =  " . I 3 )  
P R I N T  6 0  5 , H L  

6 0 5  F O R M A T  t • 0  »  » '  L A M B D A *  E T A = «  ,EL 5 « 7 )  
P R I N T  6 0 6 »  H B O  

6 0 6  F O R M A T  < * 0 "  »  »  l _  A M 8  C A  (  2  ® 0  ̂ K 2  *  = l  H O + G A M M  A  )  =  ®  .  E 1 5 »  7  )  

P R I N T  6 0 1 , R H O  
6 0 1  FOPM A T  (  « 0  •  » » RHO= • »  E Î  5 « 7  )  
eOO CONTINUE 
< 0 0  P R I N T  5 0 0 »  R H O  
5 0 0  F O R M A T  ( " © ' . " T H E  C O N V E R G E N C E  S P H E R E  D I A M E T E R »  R  H D =  •  »  E l  5 »  7  )  

999 STOP 
END 

LO 
a\ 
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