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1. INTRODUCTION

The problem of system identification has been studied intensively
and has become one of the most active fields in engineering research.

Some investigators have obtained theoretical results on parameter identifi-
ability, convergence properties of parameter estimates [1,16,18,197, and
regions of parameter identifiability [7]. There are also investigators
working on developing computational algorithms for identifying certain
control system parameters, for example, the stability and control deriva-
tives of an aircraft from actual flight test data [17].

There are two main steps in solving the system identification
problem: (1) Determine if the system parameters are identifiable, and
(2) if the parameters are identifiable, work out an algorithm for esti-
mating the parameters. To answer (1), we have to establish the definition
of identifiability first. The most significant recent work on parameter
18y wacon thcic arc s:icc
system are Tse [ 18] and Tse and Anton [19]. There are a number of
algorithms that have been proposed for solving (2).

Genexally, if the system parameters are identifiable, they are only
locally identifiable, i.e., we must have a sufficiently good initial
estimate of the parameters such that the iterative estimation sequence
will converge to the true parameters. Herget [7] provided a procedure
for computing explicit regions in the parameter space in which the Gauss-
Newton method will converge to a unique solution. The systems considered

by him were deterministic,



The definition of parameter identifiability when there are stochastic
disturbances present has been given by Tse and Anton [19]. They said
the parameters are identifiable if there exists a sequence of estimates
which is consistent in probability. They also established the necessary
and sufficient conditions for the unknown parameters to be identifiable
under some uniformity assumptions on the conditional density parametrized
by the unknown parameters. Tse [187] alsc gave the definition of local
parameter identifiability and proved that the positive definiteness of
the average information matrix implies local parameter idemntifiability.
The definition of local parameter identifiability is that there exists
an open region containing the vector of unknown parameters as an
interior point and there exists a local estimation sequence in the
closure of the region which is consistent in probability. taley and
Yue [16] established a similar concept on stochastic parameter identi-
tated that the parameters are identifiable if every
asymptotically efficient estimator converges to the true parameters in
mean square (which is stronger than convergence in probability.)

Wald [20,21] considered the consistency and asymptotic properties of
the maximum likelihood estimation sequence. He showed that under certain
restrictions on the joint probability distribution oi the observations,
the maximum likelihood equation has at least one set of roots which is
a consistent estimate of the unknown parameters. He also showed that
any root of the maximum likelihood equation which is a consistent

estimate of the parameters is asymptotically efficient.



Based mainly on Wald-Kendall-AstrSm theory, Aoki and Yue [1]
examined the asymptotic properties of the maximum likelihood estimates
of unknown parameters of a class of linear, stable, constant, discrete-
time dynamic systems form where plant noise and observation noise are
present. The‘systems considered by them were restricted to have certain
cononical structure and were single-input and single-output.

For the identification of linear dynamical systems, Glover and
Willems [6] established the concept of parametrization and developed
sufficient conditions for local and global identifiability from the
transfer function. Bellman and Astram [27 also provided an algorithm-
oriented least-square identifiability. Tt can be shown that for single-
input, zero state systems, local least-square identifiability is
equivalent to local transfer-function identifiability under some
assumptions on the least square criterion. The remaining second step
of the system identification is to identify the system parameter exactly
from input-output sequences for deterministic systems or to construct a
consistent estimation sequence by using the constrained maximum likeli-
hood method for stochastic systems. In both cases, it becomes an
optimization problem, i.e., we first set a performance criteriom which
is a function of the unknown parameters and then find best estimates
such that the cost function will reach its minimum,

In general, the cost function and its derivatives are nonlinear
and an iterative procedure must be used to find the estimate. The best
known method of solving a set of simultaneous nonlinear equations in

which the increment in each iteration is computed as a linear combination



of the residuals is the Newton method. Kantorovich's Theorem [ 12]
states certain sufficient conditions for the convergence of the Newton
iteration sequence. However, these sufficient conditions are generally
highly restrictive and are not easily examined. Moreover, in each
iteration, we have to calculate the Hessian matrix of the cost function
which includes the calculatior of a bilinear form. These are the two
main disadvantages of using the Newton method from the point of view of
practical computation,

Later researchers have developed some modified versions of the
Newton method. The most significant for the problem of interest here
are by Ben-Israel [ 3] and Pereyra [13]. The main features of both of
their algorithms are: first, we only need to compute the first order
approximation of the Hessian matrix of the cost function; second, the
sufficient conditions for the convergence of the iteration sequence are
much easier to examine. Although Ben-Israel's algorithm and Pereyra's
algorithm are the same if the first order approximation of the Hessian
matrix of the cost function has full rank, Pereyra's sufficient con-
ditions are preferable again from the point of view of practical cal-
culation [13].

In the deterministic system identification problem, the solution
for the cost function is the true parameter, i.e., the cost function
will reach its global minimum, zero, if the output sequence generated
by the estimate matches the measured output sequence. For a known system
structure, i.e., a given parametrization, there may be more than one

isolated point in the parameter space that will generate the same output



sequence for a given input sequence, i.e., the solution to the identifi-
cation criterion is generally not unique globally., Herget {7] provided
a modified version of Pereyra's theorem and a computation procedure
employing interval arithmetic to find explicitly the regions centered at
cach local solution in which the solution is unique and hence is locally
identifiable. The other feature of his work is the use of bilinear
operators to represent the linear system model. In doing so, the
identification problem of linear systems is equivalent to the initial-
state observation problem of quadratic-in-the-state bilinear systems.

This dissertation considers the parameter identification problem of
general discrete~time, nonlinear, multiple-input/multiple-output dynamic
systems with Gaussian-white distributed measurement errors. The knowledge
of the system parametrization is assumed to be known. Concepts of local
parameter identifiability and local constrained maximum likelihood
parameter identifiability are established. A set of sufficient conditions
tor the existence or a region of parameter identifiability is proposed.

A computation procedure employing interval arithmetic is derived for-

the vector of the true parameters is locally constrained maximum likeli-
hood identifiable, then with probability one, the vector of true parameters
is a unique maximal point of the maximum likelihood function in the
region of parameter identifiability and the constrained maximum likeli-
hood estimation sequence will converge to the true parameters,

Chapter ? is a review of Wald's theory [20,21] on the comsistency of

maximum likelihood estimates, the concepts of parameter identifiability



and local parameter identifiability established by Tse and Anton [19] and
by Tse [18] and the application of these concepts to the system identi-
fication problems [16].

Chapter 3 is a survey of Bellman and Astrdm's [2] definition of
least-square parameter identifiability, and Glover and Willem's [6] con-
cepts of system parametrization and identifiability from the transfer-
function. The author’s contributions in this chapter are as foilows.
Sufficient condition for local least-square parameter identifiability is
derived by employing the constant rank theorem [10]. The Theorem of
Glover and Willems is modified to provide a sufficient condition for local
parameter identifiability of minimal dimensional lii:ear dynamic systeﬁs
whose initial states are unknown, and a theorem is established to show
that for single-input, zero-state linear systems, local least-square
parameter identifiability is equivalent to local parameter identifiability
from the transfer function 1If some constant rank assumptions on the impulse
response matrix and its derivatives are satisfied.

Chapter & is a survey of ithe Newton-Kantorovich theory [12] om the
convergence of the Newton iteration method, Pereyra's theory {13] on
solving nonlinear least-square problems, Lw-norms, interval arithmetic [11],
and Herget's results on regions of parameter identifiability [7] with
application to the parameter identification problem of deterministic
dynamic systems. A numerical example is provided by the author with the

computer program listed in the Appendix.



Chapter 5 contains the principal new results of this dissertation.
It considers the parameter identification problem of general discrete-
time multiple-input/multiple-output dynamic systems with Gaussian-white
distributed measurement errors. It is mainly a modification of Herget's
results [7] on the parameter identification problem of deterministic
systems and a generalization of Aoki and Yue's result [1] on the parameter
identification problem of single-input/single-output canonical-form
linear dynamic systems with measurement noise. A numerical example is
included to illustrate the computation procedure for finding the regions
of CML parameter identifiability.

Chapter 6 gives the conclusions of this dissertation and suggestions

for further research.



2. MAXIMUM LIKELIHOOD ESTIMATION, PARAMETER
IDENTIFIABILITY AND LOCAL PARAMETER IDENTIFIABILITY
Relevant past investigations of maximum likelihood estimation
parameter identifiability, and local parameter idcntifiability are
discussed here. The first result is A, Wald's theory [20,21] on the
asymptotic properties and the consistency of the maximum likelihood
estimate of an unknown parameter of a discrete process. Then we will
discuss Tse and Anton's [19] definition on stochastic identifiability,
the necessary and sufficient conditions for the unknown parameter to be
identifiable under some uniformity assumptions on the conditional demsity
parametrized by the unknown parameter, and Tse's [18] definition of local
identifiability. An identification problem of a class of linear, stable,
constant, discrete-time, single-input/single-output dynamical systems

discussed by Aoki and Yue [1] will also be presented.

7 1 DrAalimivmasr N Aan
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Definition 2.1

Let X denote an arbitrary nonempty set. A family of subsets R of X
is called a sigma field if
c
(i) for every AeR, then also A ¢R where A® is the complement of A
(ii) if Al,Az,—--,An,——- is a countable sequence of elements of R,
[es]
then U.A_eR, and
n
n=1

(iii) ¢eR where ¢ denotes the empty set.

(iv) Elements of R are called events.



Definition 2.2

A probability Pr. is a measure over a measurable space (X,R); that is,
Pr. is a real-valued function which assigns to every AeR a number Pr.(A)
such that

(i) Pr.(A) 20 for every AeR

(ii) Pr.(X) =1, and

(iii) if {An} is any countable union of disjoint events, then
n=1
[oe] e o]
Pro( UAy)) = ¥ Pr.(A)
n=1 n=1 n

Definition 2.3

Let X be a set, R be a sigma field and Pr. a probability measure
defined on R, then the triplet (X,R,Pr.) is called a probability space.

Definition 2.4

A random variable x is a real-valued function whose domain is X and

which is R-measurable, that is, for every real number A,
{we X|x(w) sA}eR,

Definition 2.5

Let X13X, 57" Ky be a sequence of random variables, if there

n>"

exists a random variable x(w) such that

1im xn(uD==x(uD for almost all @, we say that

n-o

lim %, =x with probability one
- w
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Definition 2.6

Let Xq,Xy==" )X
o

sequence {x_} converges to X in probability or converges stochastically
n=1

=" be a sequence of random variables, we say the
to x if

lim Pr.{|x (u)-x(w|=ze}=0

n—w
is satisfied for every ¢ >0

Definition 2.7

(o]
A sequence of random variables {xn} is said to converge to x in
n=1
(i) E{lxn‘ }<e for all n,
(ii) E{lx|2}<m, and if
(i) lim E{|x-x_|*}=0.
n—ow

This is written

Laiwme x =%
n—-ow

vefinicion 2.6

If x is a random variable, its distribution function Fx is defined

o
4
.

F (€) =Pr.[x SE] for all §e (~=,x)

Definition 2.9

A distribution function F is said to be absolutely continuous if

there exists a Borel measurable function p over (-»,») such that

3
FE = p(t)de

=00

for all §. The function p is called a density of F.
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Definition 2.10

Let Xpammm Xy be random variables, n=1, The joint distribution
function of Xys===sX s OF the distribution function of the random vector

X= (xl,---,xn), is defined to be
n
Fx(gl’--_,gn) = Pr' (igl[xi Sgi])

ere-w<§i<w,1SiSn.

Definition 2.11

Let {xx,)\e/\} be a family of random variables. They are said to be
independent if for every positive integer n and every n distinct elements

kl,—",)\n inA, then

n
FX)\.l [ et 3x)\n (gl’--- ’gn) "' j1=Tl FX)\J (gj)

for all geRn.

If Fx}\i(gi) =Fx)\j(gj) for all ki,xjel\, then {x}\,)\e/\} are said to be
independently and identically distributed.

Let Xp,Xy,=== Xy ,==- be a sequence of random variables with joint

[ TS N ISP DN
pLUUdU.LLJ..L_y uc

w
(o]
+h

1Stiy functiom p(xl,xz,———,xn; 8), n=1,2,--~, which i
known functional form but p(xl,-—-,xn; ©) depends upon an unknown vector
of parameters O that may have any value in a set 2. This set will be
called the parameter space. Thus we are confronted with a family of joint
probability density functions denoted by {p(xl,—--,xn; 9): 8el, n=1,2,---%
To each value of 8, 8¢, there corresponds one member of the family de-

noted by {p(xl,—-"-,xn; 9): n=1,2,---} which is a sequence of joint prob-

ability density functions parametrized by 6. Let {p(xl,—--,xn; 90):
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n=1,2,---} be a member of the family and let 8, be unknown, g.e0. An

0

estimate of 90 based on the observation sequence X15X,,=="X , D= [,2,---

is a measurable function of {xl,xz,—--,xn}, n=1,2,~--, and is denoted by
5 A
_nE_g.n(xl,"' ,Xn) » n=1,2,---,

o«
A
{On}n_l is then called an estimation sequence.,

Definition 2.12

Any estimation sequence {-én}:=1 of 840 which converges stochastically
to 85 is called a consistent estimate for 8g.
Lemma 2.1.a [The Strong Law of Large Numbers] [ 4]
Let X{,Xg,=== %) ,==~, be independent random variables such that
E x.=0, E xk2<m. Let bn20 converges up to +o,
©

2, 2
If kz'l E xk /bk <w, then

X, +---+X
pro{lim -~ % - o0}=1.
n—o bn
Lemma 2.,1.b
Let X 2Kyy T 5K 57" be independent and identically distributed

random variables.
1f E\x“ <w, then

Xq+---t ¥
Pr.{lim

n~w

=Ex}=1

The concepts introduced above can be found in references [4], [5], and

[9].
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2.2 The Consistency of Maximum Likelihood Estimates

This section summarizes the theory given by Wald in [20,21], Let

{

variables with joint probability density function p(zl,-—-,zn; 9,

}Z=1 be a sequence of independent, identically distributed random

zZ
n

n=1,2,~--, parametrized by the unknown paramcter geﬂcsz, where (0 is the

probability density function and F(z,8) denote the corresponding cumu-

parameter space. Let

be a norm on RP. Let p(z; 8) denote the

lative distribution function of z;, i.e., F(z;Q)¢=Pr.{;iE§z}.
The following assumptions are made,
Assumption 1
F(z; ©) is either discrete or is absolutely continuous for all 8eQ.
For the next assumption, we introduce the following notation: for
9¢() and p >0 let p(z; 9,p) be

p(z5 8,p) = sup p(z; 89
le-8'l=o

For any r>0, let {(x,r) be
y(z,r) = sup p(z;8)

leff > =

Furthermore, let

. p(z3;8,p) 1if p(z;0,p) >1
P (z:8,p) =
1 otherwise
Similarly, let
VY(z,r) if {(z,r)>1
)_.
1,

1 otherwise
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Assumption 2
For sufficiently small p and for sufficiently large r,
[ 1og p7(238,p) dF(238) <=

-0

and
5]

J log W*(z,r) dF(z;8) <= for all B¢

-0
where 8, is the true parameter point.

Assumption 3

If lim 8, =8, then lim p(z;8.) =p(z;8) for all z except perhaps on a
i~ ¥ ine Ot
set whose probability measure is zero according to the probability dis-
tribution corresponding to go.
Assumption 4
1f 211#90’ then F(z;gl):#F(z;Qo) for at least one value of z.
Assumption 5
I1f lim HQiH:=w, then 1im p(zggi)==0 for every z except perhaps on a
i—w» i-w

fixed set whose probability measure is zero according to go.

Assumption 6

Lllog P(Z;_Qo)l dF(z;_QO) <

Assumption 7

(3 is a closed subset of Rp.

Assumption 8

p(z; 9, p) is a measurable function of z for el and p>0.
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Lemma 2.2

If Q%_QO, then

E log p(z; 8) <Elog p(z;_QO) 2.1
Lemma 2.3
lim E log p(z;8,p) =E log p(Z;_GO) (2.2)
p—0
Lemma 2.4

iim E log {(z,r) ===
r-w

~\
N
.
W

Nt

By the above lemmas, we can prove the following theorems.

Theorem 2.5

Let W be a closed subset of Q, If9_0 does not belong to W, then
sup (zl>zz>_'—szn;9)
Bew
Pr.{lim =0} =1, (2.4)

Proof: By Lemma 2.4 we can choose r0>0 suech that

E log ¢(z,r0) <E log p(z;9) (2.5)
Let W, be the subset of W such that

W~ {e: el sz, Qew}

0’

For each BeW

> We can choose a p9>0 such that

E log p(z; 8, p,) <E log p(z;EO) (2.6)
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The existence of Pg is guaranteed by Lemmas 2,1 and 2.2. The set wl is

closed and bounded; hence it is compact. Thus there exists a finite number

of points 8 ,---,_Qk inw

1 1 such that the union of the spheres with center

k
6, and radious p—e_i, 1=1,—--,k,i__L:$18 @i’p_e_i) covers W, .
We see that
k
0= sup p(zlazza""‘azn’ 9) S Z p(zla i pe ) "'P(Zns_gi, pe )
B¢ =i

+ w(zl"' ..."{"(Zn’ro)'

Thus we are going to show

. p(zl;—g-i’ pgi)'°'p(zn;§ia pgl)
Pr.{lim : ") " =
n~w P(Zly _90 85 9_0)

=0} =1, i=1---,k (2.7)

and

¢(21,’70) e d}(zner)
n—o p(zl;go).'. p(zn;go)

=0}=1 (2.8)

Pr. {11m Z [1og p(z. ,_1, pgl) - log p(zj;_g—o)jz ..oo} =

n~e =1
f=1,mmm,k (2.9)
and
n
Pr.{nli:“ £ [1og 1lv(zJ,*:O) - log p(zJ;gO)] = -0} = 1. (2.10)

But (2.9) and (2.10) follow immediately from (2.5), (2.6) and the strong
law of large numbers.

Theorem 2.6

A
Let 6 (zl,---,zn) be a function of the observations such that
n
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p(zl’--—’zn; '91').)

P4 R
p(zl"""zn; 90) ¢>0 for all n and for all zqs »Z (2.11)

Then
A )
Pr.{lim 8 =0 }=1.
n—wo
[e o]

A
Proof: Let@ denote the set of limit points of {“g'n}n—l’ then it suffices

to show that for any € >0,
sup{”é—__O_OH: ée@}se with probability one (2.12)
Suppose that there exists a ée@such that H_‘S-_Q0H>s, then
sup P(z,,--=52,; 0) 2 p(z;,---,z ;6)
RN ET v

for infinitely many n. But this implies

sup p(z1,-==»2; 8)
6 -8l e

zc>0 2,13
p(zq =25 O¢) 21

for infinitely many n by (2.11).

By Theorem 2.5, (2.13) is an event with probability zero, thus (2.12)
holds with probability one. We recall that the maximum likelihood esti-
mate 611 is obtained by

A
p(zl,—--,zn;gn) = Max p(zl,-=-,zn;§) for all n (2.14)
6ef)

A
If Gn exists, then

P (Zl T ’z‘ﬂ; —61’1)

= - °
p(zl7___’zn;§0) 1 for all n and for all XysmmmnX
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By Theorem 2.6, the maximum likelihood estimate is consistent,

2.3 Parameter Identifiability and
Local Parameter Identifiability

This section summarizes the work by Tse and Anton in [19] and by

Tse in [18].

@

Let {zn} be a sequence of observation statistics with joint

n=1
probability density function p(zl,—--,zn;g), n=1,2,--~, parametrized
by the unknown parameter geQ<:Rp, where () is the parameter space which is

a compact subset of RP. Let

| be a norm on RP. The true parameter @,
v
is known to lie in the interior of Q. The parameter identification

problem is to estimate the true parameter 90 based on the observation
@

sequence [Zn} 1.
n:

Definition 2.13

The parameter 9. is said to be identifiable if there exists a sequence

0

A [s9]
of estimates {Gn} which is consistent in probability, i.e., for any §,
Zndne

1

¢ arbitrarily small, there exists an N(§,¢) such that for n>N(§,€)

Pr.[]_én-g_o||>5}<e. (2.15)

For brevity, we let

P(ZH;E)E P(zls""azn;»g)’ (2-16)

and

p(zplz 139 =28 /p(2, 138 for n=1,2,--- (2.17)

For 8¢ and p > 0, let



19

p(2gs0|Zn.138) = sup  p(z ]2, 158" (2.18)

The following assumptions are made.
Assumption 1

p(Zy,8) is measurable in Z, with respect to p(Zn;_QO) dZn and contin-
uous in 0eQ for Zn almost everywhere, i.e., for ¢ >0 and 6e(), there exists
a §(¢) >0 such that for all 9'e0 with [[9-8']| <8 we have |p(z; @) -
p(Z,;8" | <e for Z, almost everywhere,

Assumption 2

‘ar log p(zn,plzn_l;g) p(Zn;QO) dZ <o for some p>0
and e (2.19)

and

jn log p(zn|Zn_1;_9_0) P(Z_58,) dZ < (2.20)
R
for all n=1,2,--~

Assumption 3

For all 8e and some p0>0,

n
2
Var°{1.§1 log p(zk,p‘Zk_l;_Q)}= o) (2.21)

for all 0<p spo, where O(nz) is such that

0("12)
lim -——-—2— =0
n—*ow n‘

Assumption 4

Let the set Bn@) be

Bn(_) = {zn: p(Z58) = 0}
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then for all 91,928(2, we have

Bn@l) =Bn(_Q2) for n=1,2,--- (2.22)

Since the only information about 8y is the observation sequence statistics

©

(2,

with their joint demsity function p(Z,;8), n=1,2,---, if there

are two points 97,860, _9194_92, such that

2

p(Z,; 81) = p(Z,;8)) (2.23)
or

P(2q1Zy 15 8) = P(2n]2,.138,) for all n (2.28)
we are not able to distinguish 6; and 8, in Q.

Definition 2.14

Two parameters 9,,6,60, 8, #_92 are said to be unresolvable if the

equality

Pz lz, 138 7 plalz, 1 00 (2.25)
holds with probability one for all except a finite number of integers
n>0, i.e., if (2.25) holds with respect to the measure p(Zn;_O_l) dZn as

well as p(Zn;_Qz) dZn.
Definition 2.15

The set ( is said to be identifiable if no two elements in QO are
unresolvable,

By using the constrained maximum likelihood method, the identification

problem is: find éneQ as an estimate of @, such that

0

o) = Max p{Z ;8), n=1,2,~--- (2.25)
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Since () is compact and hence is closed and bounded, and p(Zn;Q) is
continuous in @ by assumption 1, a solution to (2.26) exists and the

@
estimate sequence {6n} is a consistent estimate for 6. if 90 is unique.
Zn3p= = =2

1 0

This follows from Theorem 2.6. However, if there are two points _Ql,gzefl,

_Qlaéﬁz, such that

lim p(Zn;_Ql) = lim p(Zn;_Qz) (2.27)

n—w n— o

[+ o]
then it is obvious thut ién}n will fail to converge.

=1
Definition 2,16

Two parameters _Ql,_st Y _€_>1 #92, are said to be CML unresolvable if
lim p(zn‘Zn_l;_Ql) = lim p(z_|2__138) (2.28)
n—o n—ow :

with probability one.

Definition 2.17

The set () ie <caid ro be Gl ideuniifiable if no two clements in O are
CML unresolvable.

The following theorem was given by Tse and Anton in (19].
Theorem 2.7

If for all 6_,0 60, _91#92, there exists an countably infinite set

1772
Lct’ (I+=the set of positive integers) such that

p(zyl2a13 8D # p(z |2 _158,)

with nonzero probability with respect to —Ql and §_ uniformly in nelL, then

2

(0 is CML identifiable.
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The above concepts on parameter identifiability can be applied to
the system identification problem.

Consider a linear discrete-time system described by:

x(k+1) =Fx (k) + Gu(k)

z (k) =Hx(k) +v(k) (2.29)

where T is the (aXn) state transition matrix
G is the (nXq) input matrix
H is the (r Xn) output matrix
x(k) is the n-state vector
z(k) is the r-output vector
u(k) is the g-input vector
v(k) is a Gaussian white noise with zero mean and convariance matrix Q.

Let the initial state x(0) =x . The parameter §O= {EO,FO,GO,HO,QO} is to

0
be identified. We assume _QOG:Q crP where 0 is a compact subset of R,
Furthermore, we assume that
(1) the system is stable for all 8eQ,
(2) the system is completely controllable, i.e.,
rank[G,FG,---,Fn—lG] =n for all €eQ), and
(3) the system Is completely observable, i.e,
rank[HT,(HF)T,———,(HFn—l)T]=n for all 8sQ.
The assumption of controllability and observability implies that the system
is of minimal dimension and equivalent systems for (2.29) exist, The

joint probability density function of the observation sequence f\g(O),---—

-=-,2 (M)}, M=0,1,2,---, is given by
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M
p(2(0) ,===,2 () 58) 5T Py oy @(K) - Hx (105 ©)

M
13 (200 - 1x007Q" 200 - Bx(0) ]}

= Const. exp{—
2 k=0 (2.30)

where x(k) is the solution to (2.29) for a given 6eQ}. The CML estimation

method is then to find én as an estimate of QO such that

P(2(0) ===,z ()5 ) = Max p(z(0),=--,2(1); §)
OeQ

M=0,1,2,--- (2.31)
1f there are gl,gzen, Qlaﬁgz, that will both generate the same Hx(k)

sequence when applied with a given input sequence, then

M
ol v() (_(k) Hx (k) ; © )_TT P (k)(z(k) (k) 58,)

M=0,1,2,--- (2.32)
for the same measurement noise distribution. Thus by definitions 2,14 and
7.16. Ql and Qz are both unresoivabie and (M. nnresoivabia. Sinece avsrem
(2.29) is minimal, the following theorem, which provides the sufficient
condition for unresolvability, follows immediately.

Theorem 2.8
Let 8, = {3_{01,F1,G1,H1,Q1} and
_g_?={2_<02F G, H ,Q} 9,,8,¢0, Glf’_G_z.

Ql and 92 are both unresolvable and CML unresolvable if there exists a

nonsingular, nonidentity matrix P such that
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210™ P20
Ql = Q2
Proof: Let the state wectors generated by Ql and 92 be El(k) and Ez(k)
. -1
respectively. Then X (k) =PX, (k) Hllcl (k) =H2P P_}_{Z(k) =H21_22(k) for any
input, and the two systems parametrized by 91 and 92 respectively are

equivalent.

Therefore
M
120y (i) (2 (k) - Hyx, (k); _91)
1 4 T -1
= Const.-exp{-5 Z[2(k) - Hx, () ]°q; [2(k) - Hyx; ()]]
M -
= Const.vexp(-1 T [2(0) - Hx, (017, (200 - K%, 007}
= JoPy (k) (Z(6) = Hyx, ()5 8,), M=0,1,2,~--
Hence 6

, and 8 are both unresolvable and CML unresolvable. The above

theorem is a modification of the one given by Tse and Anton in [19].

To illustrate Theorem 2.8, we have the following example. Consider

the system

x(k+1)= | 0, 1.0

x(k) + u(k)
0 94 e (2.34)

z=[1 0]x®k + vk
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1

9,

x(0) =

. T . . s
with §==[91 8, 93 6 65]" to be identified.

By Theorem 2.8, the following equations are obtained

- - r i
0; 1.0 Py P, [ o, 1.0 I
!
L o e’ 2, By t 0 0, B,y By,
o1 2, Pyl To]
i
Lgs LP21 P22} %5
(1 0] = [1 0] P P -1
= 11 12

P, Py (2.35)

0

el
!QZJ ‘LP21 "2

and the solutions are

i i_
93+94-93+94
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Specifically, if we let
§1=[0.5, 0.1, 0.3, 0.7, 1.0], then
_ez=[o.s, -0.1, 0.7, 0.3, 1.0]

and
1.0 0

-0.4 1.0§ .

L.e., the following two systems

{ 0.3 1.0 |

x(k+1) = x(k) + u(k)

0 0.7 1.0

z(k)y= [ 1 0] x(k) + v(k)

2(0) = [0.5, 0.1

ol

and

x{(k+ 13 =1 1 x(k) + i 1 udk)
0 0.3 l ll.O]
2() = [ 1 0] x(k) + v(k)
T
x(0) = [0.5 , -0.1]
are unresolved in any compact subset of R’ containing _Ql and _92.

(2.36)

(2.37)

1f there is more than one vector of parameters in () that will generate

the same observation sequence joint density function, the parameters are

not globally identifiable. However, if there exist regions around each

point and if there exists a local estimation sequence in each region, we
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are still able to identify those parameters by some identification algor-
ithms of local variation type. The following concept is established by
Tse in [ 18],

Definition 2.18

The parameter ger is said to be locally identifiable if
(i) there exists an open set S0 such that 90 is an interior point of
SO’ and

(ii) there exists a consistent estimate

., ™ _ -
{Qn}ncl in S0 where S0 igs the closure of SO'

We will call S, the region of parameter identifiability. By imposing

0
the same assumptions as the above on the joint density function of the
observation sequence, Tse [18] has the following theorem.

Theorem 2.9

If for all n=1,2,--~-, there exists a k2:>0 such that

T
d log p(z;[2y-138) D Log plz |z, 13 8)

11

I _(8y) =y {[

T, uO a_@o aQ
2
>AI (2.38)
pPXp
where EG represents the expectation with respect to the density functiom
b=y}

p(Zn;Qo), then 90 is locally identifiable.
Another weaker sufficient condition for local identifiability was
also established., Define

T
o log py (&) 3 log py ()

I, §@ =Bl =g ] (2.39)
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where

pk,j@>Ep(zk’zk-l‘l’-_—,zj Zk_1§_9) (2.40)

Noting that

2 T
] {a log pk=j@}=_E {[B log pk,j@][a log pk’j@] 1
“T9 2. 6 38 29 .
_ 89 . —_
and
2
d” log py ;9 j 0" log pi’i@)
EQ 2 EO{JZk 2
- 38 - 28
2
j o logpy ;(8)
=7 Ee{ >
l=k__ ae
]
= -iEkJi,i@) (2.42)
We have
j
T g ©) = Z5 (©) | (2.43)
and
n
T2 =575 1€y (2.44)
Theorem 2.10
If there exists a X2:>0 such that
n 2
if“mi;‘:lji,i@o) = rllﬂnmJlsn@O)zx i (2.45)

then go is locally identifiable.
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Definition 2.19

A subset SCRP is said to be locally identifiable if all the elements
in § are locally identifiable,
Theorem 2,11

A sufficient condition for a subset SCRP to be locally identifiable

is that
. 2 2
> .
i{?mJl’n(Q) A (Q)Ipxp, A7(8) >0 for all 8eS (2.46)

In the next section we will present a system identification example

given by Aoki and Yue [1].

2.4 An Example of Siystem Identification

Aoki and Yue [ 1] examined the asymptotic properties of the constrained
maximum likelihood estimate of the unknown parameters of a class of linear,
stable, constant, discrete-time systems with observation and plant noise.
“he sysrem considered hy them is in the compiereiv observahie companion
form and is single-input and single-output, hence the system representa-
tion is unique. Therefore local identifiability will imply global identi-
fiability for the class of systems considered by them. It is
obvious that global identifiability implies local identifiability.

Consider the dynamic system represented by

x(k+1) = F.}f(k) + Gu (k)

y (k) =Hx (k) (2.47)

2 (k) = Hx (k) + v (k)
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where F is an (nxn) matrix, G is an n-component vector, H=[10---0] is
a (1 xn) matrix, and v(k) is a sequence of independent and identically

distributed random variables with zero mean and finite variance 02

, 1.e0,
v(k) ~ N(O,cz), k=0,1,2,~-~., F has the following completely controllable

companion form:

‘-allo.. 0 ]

-a. 0 1 0 0

F= .20 . « e © °
. ‘ﬂﬂ..l

-a Oonouo

% |

T
and G=[by,b,,===,b ]

The initial state x(0) is an unknown n-vector. Our purpose is to

identify
T
9=[31,"",3n, bl’-"’bn] , @ 2n-vector,

and the unknown initial state 3!:(0)5_}30. '

The input sequence u(k), k=0,1,2,~-- is known and is assumed to be

uniformly bounded.

Suppose we take M observations. Define

T
Uy=[u(0), u()),===, u(t-1)]
¥, =[v(0), v(1),-=-, var- 1]
1, = [y, y(1),-=-, y0i- D1*

2,=[2(0), 2(),---, z01- D] (2.48)
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Then
= 49
A = By * By x(0) (2.49)
where
noi
=1 + Y as
M MxM i=1 1
n .
_ 1
BM ~i§1blS
IDXn
E = (---=-) ‘ (2.50)
M
OMen,n

and § is the M XM shift matrix with element Si' =§

37085, 1 Another way to

express the input-output relation of (2.47) is as follows:

Y =H 6+E x(0 (2.51)
M M M—()
where
nxr b4 n«; ol ot nzvv hn I4>) o\
In = {701 4 TO I,,a"7"" "0 Y. . U 20 U .+ 0 U..} \LeL)
M M —I M M M =11

which is an M X 2n matrix.

We assume that the true parameter 90 is an interior point of ( where
{2 is a compact subset of Rzn. Furthermore, we assume that the system
(2.47) is stable for every ©eQd. By (2.47) and (2.49), the output sequence

ZM can be expressed as:

-1
Zy = yM+gM = _\gM+AM (BMI_JM+ EM>_<0) (2.53)

and the joint probability density functiomn of ZM is
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p(Zys 8,%y) = Const. -exp('—l--2 HgM- AM'l(BMyM+ Eyo) !IZ) (2.54)
20

A
The constrained likelihood estimate of € and Xq denoted by éM and EOM

respectively, are obtained by

A
log p(_Z_M,éM,éoM) —QegMixeRnlog P28, %) (2.55)
—_ ’._0

For any 8e(2, Maxn log p@M;gﬂ_cO) is obtained by
2 @ =kl e WD e el s
Xom m Ay v Bl By By ) LEy Ay Bly .

Then QM is obtained by

. -1 - 2
’3;;;”%4 “ Ay B FEE O]
"1 ~ 2
= flz, - &y B U+ EE @D (2.57)
and

A .~ AN
X . o
- UM UM ™M

|
Y
d
-
-~
[a®]
wn

The following theorems were given by Aoki and Yue in [173.
Theorem 2.12

If the system (2.47) is completely controllable, and G is not a zero
vector, then the constrained maximum likelihood estimate é converges to

the true parameter 90 with probability one if and omly if

T —
lim 40, . T >0
M= e M. 2n M, 2n

where

- 2 2n
EM;ZT\ - (SHM’S .L.IM’---?S .LJM) (2’59)
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Theorem 2,13
If the system (2.47) is completely controllable, and G is not a zero

vector, then the constrained maximum likelihood estimate éM converges to
the true parameter 90 if and only if

1im 1 _I-_IMT_I-_LM>0 for all 6eQ.

M~ M
We note that the positive definiteness of the two matrices in Theorem 12
and 13 are sensitive to the input sequence U, ; therefore, input synthesis

is an important factor for the identifiability of the system parameters.
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3. LOCAL LEAST-SQUARE PARAMETER IDENTIFIABILITY
AND LOCAL PARAMETER IDENTIFIABILITY FROM THE
TRANSFER FUNCTION OF LINEAR DYNAMIC SYSTEMS
In this chapter we will discuss specifically the parameter

identifiability of linear dynamic systems. We will establish the concept
of parameter identifiability without considering the identification
algorithm, the algorithm-oriented least-square identifiability [2], and
the transfer-function identifiability for linear dynamic systems [6].

Furthermore we will discuss the relation between the local least-square

identifiability and the local tramsfer~function identifiability.

3.1 Notation
We will present specifically the manipulation of the bilinear
operators in this section which is necessary for the approach later on.
For ¥(8) a real-valued function of QeQ(:Rp, i.e., §:Q-R, if §(O)

is differentiable with respect to 8¢, we define

il 1_0'_\\ "‘i@\
‘(o = 01{1(_/ - oy \=/
1O = 55 s g )
wheye
9=1[6,,-,0 7.

If y(8) is an m-component vector-valued function of 6e(, we define
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9
=
=

EXC 2, |
CLI ©oBe,
1 =
a‘l’m@) . 5¢m@)
[ 31 (9
and 9
2%y, (©) "
&u(g) = [-\81\ 5 i::i
i. o] j Q k J I_i= 1
which is an (mxp X p) bilinear operator [14].

A@) =LA,

which is an (mX p X p) bilinear operator,

.(9)], we define
BAi.@) i=
J .
A,@)E _—hT J:
aek e

=

b
2
?

- - ’m

“-sp

==sP

For A(@) an (mxp) matrix,

- ,m

===,p

==,p

Lt B 15 an (mXp Xp) biiinear

operator, then the product of B with a2 p-vector 9 is an (mxp) matrix

Moreover,

We dencte

P p
L. (T B,

(R89), =
- =l k=11

i

8)

CH
k™ 3

jk

%
the permutation of B as B , where

%

(87,

ijk

®Biics
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B is said to be symmetric if

B=Bv‘c

The transpose of B is denoted by BT, where

T -
CRNREIONY

The product of a bilinear operator B with a (p X q) matrix is an (mXp X q)

bilinear whose i, j,k element is

P
(BA) ; g1 = 21 B sthek

=3
i
)
ae)
I}
Q
L
[4
(¢}
rt
[}
Hh
[3
~
Kl
>
3]
N
3
ct
3]
}J
3
-t
3
P"
rt
jond
[}
3
S
j=]
=<
3
<
N’
o
-y
—d
-la
3
D
)
b
Q
"3
1]
(]
»
-+
Q
=
|-I
72}
b
©n

(g xp xp) bilinear operator whose i,j,k element is

m
(AB) ;i = pZ1210 Btk

Given two matrices
A=[aij] s 1,j=1l,===-,n , and
B=[bij] y 1,j=ly==-m

-
we form a new matri

a
)
5
-

-t

=

[0

1=

1]

=}

(]
3

ot

"
)

¢ obtained by multiplying each
L3

element of A by each element of B in the following way:

.=FC 1 - r. 1 1
CTLC ke T Lok ]

Here, the pair of integers (k,j) act as the first index, and the

pair of integers (k,L) act as the second index, where

i,k=1,2,-=~,n,

jd=1,2,=-~,m,
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The matrix C is called the Kronmecker product [15] of the matrices A and

B and is denoted by
C=AX)B

For example, let A and B be second order matrices. Then their Kronecker

product is a fourth order matrix, which can be written as

- T
O L L PRV L PR LI
a1pbpy  Apgboy APy appby,

L L L PR Py LSS B PY LoD

[
fl

Lazlb21 aj1byy  3yoPa1  8yyby;
1,11 %1112 Siij2t C11;22)
©12;11 C12;12 C12521 0 S22

€21;11 21312 C21321 Co1522

L°22;11 “92:12  “22321 sz;zzl
For an (nxm) matrix A:=[aij], A is defined by

[31;]
a1

anl
a12

=1l
]
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3.2 Local Least-Square Parameter Identifiability
A general continuous-time deterministic dynamic system is described

by

%(t) = (x(t), u(t), t; 6)
y() =5 (x(t), u(t), t; € 3.1

where x(t) is the n-state vector, u(t) is the g-input vector, y(t) is the
+ +
r-output vector, te[O,oo)_-;R+. W:Ranqu xQ-'Rn, and g:Ranqu xQ-’Rr.
P

8¢ CR is the unknown parameter to be identified, 1I£ the gystem ig dis-

crete-time, then it is described by

x(k+1) =§(x(k), ulk), k; 8)
y(k) =§ (x(k), u(k), k; 9) (3.2)

k=0,1,2,---

We assume that () is a compact subset of Rp and the system is stable

for all Bed. We must note here that 8 may stand for the system model
coefficients only, e.g., the Fy, G, H matrices of the linear systems, or
it may include the unknown initial state. To distinguish the above two
cases, we have the following definitions. Let A denote the set of all
admissible ifupuis, let h{t;8) or Li{k;8) demotes the outpit genmerated by
8 when applied with a ue A

Definition 3.1l.a

Let @ stand for the system model coefficients only, then for the

continuous-time systems, _Ql,_ze:Q, _G_l #_92 are said to be unresolvable in

Qif
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h(£;0)) =h(t;0,)

1 +
for all l{OeRr, ueA, and teR .
For the discrete-time systems, §1 and §2 are said to be unresolvable

in O if
h(k;@)) =h(k;8))

for all x eRn, ueA, and kef+.

0
Definition 3.1.b

If 6 includes the unknown initial state x_, then for the continuous-

0’
time systems, 91,_926(2, 91 #8, are said to be unresolvable in Q if

h(t;8;) =h(t;8,)

for all ueA and teR .

For the discrete-time systems, 6, and 8, are said to be unresolvable

1 2

th

P

h(k;8)) =h(k;9,)

for all ueA and keI .

Definition 3,2

an open sphere S@O,p) with radius p >0 centered at 90 such that there is

no other 8¢S @O,p) naQ, 9#_@0 which is unresolvable from 8.

The above definition is made independent of the method for recovering

_QO. However, Bellman and Astrdm [2] established an algorithm-oriented

definition which is called the least-square identifiability. Specifically,
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they first set a least-square type criterion parametrized by the unknown
parameters and sought the unique local (or global) minimum of the criterion.
Parameter identifiability was then implied by the uniqueness of the

minimum of the criterion,

Consider the criterion given by

3,0 = j lb(t;8) - z(t)H dt, T>0 (3.3)

for the continuous-time system, or
3, (8) = zu_(k 9 - z(k)ll M=0,1,--- (3.4)

for the discrete-time system, H'H denotes the norm, y(t) and y(k) are
the measured outputs of the continuous-time systems and the discrete-

time systems, respectively. The following definition was given by
Bellman and Astrom in [27.

Definition 3.3

Let QO be the true parameter of a control system parametrized by the
unknown parameter @. Then §0 is said to be locally least-square identi-
fiable if the criterion JT(Q) or Jy(8) has a local minimum at g==§0. If
the minimum is global, 90 is said to be globally identifiable.

~
gcolacilishh the gurlficieny Ccondcitigng ror L Lot lialile

we proceed as follows. We consider the discrete~time system. To find
the local minimum of JM(Q), we take the derivative of JM(Q) with respect
to 0 if JM(Q) is a continuously differentiable function of €. Since JM(O)
is a scalar, Jﬁ(@) is a p-component vector function and J&(Q) is a (pxp)

matrix function. If QO is the true parameter, then b(k;§0)==1(k),
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k=0,1,---, and JM(QO) =0, M=0,1,2,~~-, Since JM(Q) is nonnegative, 90

is a minimal point of JM@O) and hence JP:I@O) =0. However, if 90 is to
be locally identifiable, 90 must be the unique minimal point for JM(Q) in
some neighborhood of 90, i.e., there must exist an open sphere S(_Qo,p) 0
with radius p >0 centered at 90 such that if GeS(QO,p), 9#90, then
Jl\:l@) #0 and hence O is not a minimal point of JM@)o If we can establish
a sufficient condition such that J&@) is an injective function (a one-to-
one mapping) in some neighborhood of 90’ then this condition will imply
that §0 is locally identifiahle, We first state a result given by
Narasimhan in [10].
Lemma 3.1

Let S be an open set in RP and \',I:S"R& be a Ck mapping (a2 k-times
continuously differentiable function) with k=1, Then if {'(8) has
constant rank j in a neighborhood of OOeS, y is locally injective at (-)0
if and only if j=p.
Theorem 3,2

A sufficient condition for _9_0 to be locally identifiable is that

there exists an open sphere S@O,p) CcQ with radius p >0 centered at 8

such that the (p xp) matrix JDI:I@) is nonsingular for all ¢S (Go,p) .

rank p .for all ﬁ_}as@o,p). By Lemma 3.1 JI:I@) is locally injective on

S(Qo,p). Let Qes@o,p), _Q#_QO, then Jb;l@) # 0 hence JM@) #0, M=0,1,2,.

Thus 90 is the unique minimal point for JM(_Q_), M=0,1,2,---, in S@O,p).
The above theorem is an immediate result of Lemma 3,1. The least-

square identifiability and the identification algorithm for finding the



region of parameter identifiability will be studied extensively in

Chapter 4.

3.3 Local Parameter Identifiability from the Transfer Function

In this section the systems considered are discrete-time., We will

first briefly introduce the realization theory established by Ho and

Kalman in [ 8] and explain the distinction between the realization and

identification,

Specifically, the parameter identification from the

transfer function can be viewed as the realization from the transfer

function restricted to the given parametrization.

The quadruplet {F, G, H, D} defines the internal description of a

system, which we shall denote by ¥, via the equations:

x(k+1) = Fx (k) + Gu (k)

v (k) =Hx (k) + Du(k) (3.6)

el
P
v

whiete T
G is
His
D is
x(k)
3 (k)

u(k)

[
[ V31

the

the

the

B T O S
U XLl dSlaLc LiadlidlLlLiull iiacsL L

n X q input matrix

X n output matrix

LAY

r X q direct-coupling matrix

is the n-state vector

is the r-output vector

is the g-input vector

The external description of the system T is the zero-state impulsive

response description, namely the descrintion in terms of an impulse input

and the corresponding output. There are two ways to trepresent the external
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description of ¥. One of them is the time domain description. From

equation (3.6), it can be easily scen that the impulse responsc of ¥ is

given by
Wy =D
Wl = HG + D
M-1 i
Ww ={ZHFG} +D
M i=1
. ) (3.7)

and the impulse response matrix is given by

- T ~ D L
W, HG” + D
W HFG + HG + D
W= = M-1 ,
Wy { ZHF'G}+D
i=1
. . . (3.8)
L1 L .

By the frequency domain description, the input is related to the output by

the transfer function T(z) such that

Y(z)

1

T(z)U(z) (3.9)

where
-1

{H(zI - F) G D} (3.10)

T(z)

zeC (the field of complex numbers).
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Through the concept of realization, the external description of a
system can be related to the internal description of a system. The prob-
lem of realization can thus be stated as follows [8]: construct {F,G,H,D}
such that the identity (3.7) holds, i.e., given a sequence of constant
(r x q) matrices {Mi}:=0’ find a quadruplet {F,G,H,D} of constant matrices

such that

[o2]
The sequence {M,}.,_, is called the Markov parameters of the system ¥.

The dimension of 3 is defined by

We say that the realization {F,G,H,D} is minimal if the dimemsion of

T R ;e e mmenal de | AN K : 1 1
F is less than or equal to the dimcnsion of any other realization of I

From the linear system thecry, we know that a realization is minimal if

and only if ¥ is both completely controllable and completely observable,

i.e., if and only if

-1
rank[G,FG,—~=, Fn G] = n (completely controllabie)

T T n-17T
and rank(# ,HF)', ---, EF ) ] =n {(completely observable)
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Furthermore, given an external description, two minimal realizationms

Zl=={F1,Gl,H1,Dl} and 22=={F2,G2,H Dz} are equivalent if and only if

23

there exists a nonsingular nxXn matrix P such that

o= pEp
2 1
G, = 6
H, = Hlp'l
D, = D (3.9)

These two equivalent internal descriptions differ only in the co-
ordination of their state spaces.

Even though we have the knowledge of the external description and
the minimal dimension of ¥, generally we are not able to determine the
quadruplet {F,G,H,D} uniquely unless the structure of {F,G,H,D} is con-
strained in some specified form. We can illustrate the above statement

by the following example [2].

CAancidnw

RO POPR S84

o 7 { T

-(8,+8,) 0, 1
x(k+1) = x(k) + u (k)

i 9, -(93+-94{ 0 (3.10)
yk) = [ 1 0] x(k

The transfer function of (3.10) is

Z'{'GB+94

T(z) =3 (3.11)
z + z(91+ 92+e3+94)'+. (e1+92) (e3+94) - 0293
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Thus we have only three equations to solve the four unknowns
{91,92,93,94}:
93+ Ql{l- = al

(91+02) (93+ 94) - 9293 = a, (3.12)

where aq, a9, and a, are known constants. For this under determined set
of equations, one of the four unknowns has to be dependent on the other
three, hence the representation of (3.10) is not unique. However, if the

system representation is constrained to have the canonical form:

[ o |
0 1 93
l{(k-i- 1) = _}_{(k) + u(k)
91 92 k 94 (3.13)
yk)y = [ 1 0 ] x(k
then
6,2+9, - 6,8 ayz+a
3 4 273 3 L
T(z) = T = 5 , (3.14)
2" - Gzz-e1 z2-+ azz+ a1
and
91 = a1
92 = a,
93 = 83
94 = a, - a,a, (3.15)

is the unique representation for system (3,.13). The identification
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(realization) of system (3.13) is an example of the canonical parameter
identification problem which has been thoroughly studied. By canonical
parameter identification, we mean finding a certain set of parameter in
a given canonical parametrization which when applied with the input
sequence from a given set of input-output sequence will generate a set of
output data which will match the given output sequence within some well
defined degree of accuracy. The primary reason for finding canonical
parameters is to obtain a model which gives a good match to the measured
input-output data. However, it may not be desirable to use a canonical
form for a given physical system. That is, it may be desirable to identify
specified parameters in a given parametrization. Hence the parameters
identified in a specified canonical form may have little or no recogniz-
able relationship to desired physical parameters. To expound the above
statement, we give the following example.

Given the frequency domain external description of a second order

zero-state system %:

T(z) == < (3.16)
z +az+b

The canonical parametrization:

E(k%—l) = x(k) + u(k)

L9, 0, (3.17)

y@=[ 1 01 x@
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can be uniquely determined by

91 = -b
92 = -a
93 =c (3.18)

hence the canonical parametrization is globally identifiable. However,
if we are given the physical parametrization which is the same as the

example in section 2,3:

}

a4
-
A

x(k+1) = x(k) + u (k)

0.0 6 ) (3.19)
yk =[ 1 0] x(k)
then we get the following set of equations:

Ql+92 = =-a
9192 = b

6, =c (3.20)

It is obvious that Gl and 92 can be interchanged without affecting the
transfer function. Hence this physical parametrization is not globally

identifiable but only locally identifisble since the two parameters:
8, = (91,02,63) and 92 = (92,91,93)

will both generate the same transfer function even though they are isolated

in the parameter space if 8 75_9_?,
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Definition 3.4

A parametrization of the system matrices {F,G,H,D} is a continuously
differentiable function which maps (), the parameter space, to the

n(n+q+r)+rq . e / .
R space; i.e., a parametrization is a ¢ function

+q+ )+
(F,G,H,D)(_Q_):QCRP-’Rn(n qQ+T)rrg

3

For brevity, we let n(n+q+1r)+rq=4. The above definition was given by
Glover and Willems in [6].

Definition 3.5

Given a parametrization of a system I, two parameters gl,gzen, §1:#§2

are said to be unresolvable from the transfer function if

HE)) (21 - F(€))6(@)) +D(@)) = H(E) (1 - F(g,) '6(8 ) +D(@,)
(3.21)

for all zeC and z=#(h(F(91)), X(F(@Z))) where A (*) denotes the eigenvalues

of the corresponding mairix. or equivalently,
D(8,) = D(O
(&) = D(@,)
H(Ql)F‘(Ql)G@l) = H@z)F*@z)G(_Qz) i=0,1,2,--- (3.22)
The following definition is similar to the one given by Glover and

Willems in [67.

Definition 3.6

A parametrization is said to be locally identifiable from the transfer
function at.QOeQ if there is an open sphere S(Qo,p)c:Q with radius p >0
°d

such that there is no QQS(QO,p), Qaégo, which is unresolvable from §0 i.e

if there is a.QeS(QO,p) such that
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D® = D@,
HOF ©)6(©) = HE)F (€)6(8)), i=1,2,--- (3.23)
then §=QO.

By Lemma 3.1, an immediate result follows.
Theorem 3.3

Let (F,G,H,D)(8): a-& be a parametrization of ¥, then the
parametrization is locally identifiable from the transfer function at
0ge? 1f the gradient of the Markov parameter matrix ﬁ(_Q) with respect to
6 has constant rank p in an open sphere S(_G_O,p) with radius p >0 centered

at 90 where

D(8)

H(8)G(0)

M(®) = | H(O)F(8)G(O)
M

H(O)F (8)G(8)

2

If a parametrized system is of minimal dimension, then it is related
to its zero-gtate and zero-input equivalent gvstems by cimilaritv trang-
formations., For the physical parameter identification problem, we are
interested in the equivalent systems which have the same parametrization,
i.e., we wish to investigate if there is any transformation matrix which

will transform a parametrized system to an equivalent system with

different parameter values but with same parametrization. Specifically,
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we shall investigate the solution (P,8), PeGL(n), the space of nonsingular

(n x n) matrices, 0e), of the following set of equations:

Pr(@)P | = F(g,)
PG(9) = G(8,)
H@)P'l = H(8,)

D(®) = D) (3.26)

where _9_0 is the true parameter. It is obvious that if there is an open
sphere S(_Qo,p) c0) such that (Ian,_QO) is the unique solution of (3.24) in
GL(n) XS(QO,p) , then the parametrization is locally identifiable from the
transfer function at _Qou The following theorem provides the sufficient
condition for (3.24) to have unique solution locally which was given by
Glover and Willems in [6].

Theorem 3.4

Let {F,G,H,D}: Q-'I{t be a given parametrization of the system matrices

{F,G,H,D} and suppose {F,G,H,D} is minimal.

Let
- _1 T
PF(Q)P
PG(8)
£(P,Q) = -1
HQ)P
D(8)

I1f there exists an open sphere S(Qo,p) with radius p >0 centered at

GO such that V(P o) &(P,0) has constant rank n2+P at P=1 and for all

8eS @O,p) , then the parametrization is locally identifiable from the

transfer function at goa The matrizx V(P 9) &(r,0) evaluated at the point
A



(1,9) is given by

V(2,006 P2

(1,9
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T
(Ian®F © - F(9)®In><n)pzxnz

1 X6 @)

nx

(-H(®) (X1

O,

rgxn

ngxn

)

nxn 2

rnxn

which is an (n2+-nq4-rn4-rq) by (nzi-p) matrix.

system parametrized by

then

o

it

We give an example to illustrate the above theorem.

Consider the

(3.26)
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091001 001 0| 000
16,00)fo 00 1} 100
00 06 le.0 6 0} 000
1 1 2
00 16{]0o 6.0 6! 010
v QS(P,Q) = i 2) 1 L 2
®:9 (1,9
06,00 000
00 06, 001
-10 00 000
0-100 000
i 00 00 000

1
1 6 0 -1 1 020
2
i —91 0 -92 91 0 0 O
0 —91 1 0 01 0
0O & 0 0 O 0 0
3

6 0 0 0 0 00 (3.27

3
which is of rank 22+-3==7 for all 8eR hence the parametrization is
globally identifiable from the transfer function.
We will extend the above theorem for the case that © includes the
%1

unknown initial state, i.e., 8 = -0 !, where n is the unknown system

parameter vector contained in {F,G,H,D} with a specified parametrization,
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Then the augmented parametrization is a mapping from the parameter space

Qt0theRn(n+q+r)+rq+n

gpace. Let L'=n(n+q+1)+rq+n. We note

that

5= [Tt O (pom) 8

and =000 _1yyni L ooy (p-n) 1o (3.28)

%00
Let §0== denote the true parameter. The solution (P,8) of the
following sgt of equations is sought

FXy = Zgg

PE()P T = Flny)

PG() = 6(n,)

H@)P"l - H(np)

D(m) = D(ny) (3.29)

The foilowing theorem is estahiished immediaraiv.
Theorem 3.5
’f/,
Let {x,,F,G,H,D}(8):Q~R” be a given parametrization of a system

Y and suppose {F,G,H,D} is minimal., Let

FPx_ W
—u

PF ()P "
e ®,0 = | re
H(I])P-l

D ()




If there exists an o

&

at 90 such that V(P,Q)s (
all _Qes@o,p), then _9_0 is

Vp 9)6*(P,§) evalua

g
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pen sphere S(Qo,p) cQl with radius p >0 centered
P,0) has constant rank nzi-p at P:=In><n and for
locally identifiable (by definition 3.2).

ted at (Inxn,g) is given by

T =
a0z, %)
nxn 0 axn2 & Vnxp
T =
o . , \
(Ian\x/F @) Fm)®1nxn) 2.2 (VQF(D)) 2
n-xn - n-xp
£ T =
& (P,0 = I G G
Vo, ¢ ,_)} <nxn® @)nqxnz L@, o
(1,9) :
CHm @I ) (Vi ()
nxn rnan = raxp
O gD ()
rqxn2 8 rqxp
N «
(3.30)
which is an 4’ by (n24-p) matrix. We note here that §0==20 since X, is
a column vector and hence U X = rl L0 1 ov (3.28).
g-u  “axn® ax(p-n)- ° ° :

Comparing Definition

that identifiability from

3.2 and 3.6, and Theorem 3.4 and 3.5, we see

the transfer function is equivalent to the

zero-state parameter identifiability according to Definition 3.2 which is

a more general definition.
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3.4 Region of Least-Square Identifiability and
Transfer-Function Identifiability

In this section we will discuss the relation between the least-squarc
identifiability and the transfer-function identifiability. We consider
a parametrized single-input, zero-state linear system ¥ with system

matrices {F,G,H,D}. Let the true parameter be 90. Its measured impulse

response matrix is given by

[ y@ ] [ pey |
y(1) H(8;)G(8,) +D (8,
1(2) H(@)F (@60 +H(8)) 680 +D(E))
Y = o = o
M

° .

M .
1
100 || {ZHEE)F (@)6E)1+D(E) (3.31)

which is an r(M+ 1)-component vector where r(M+ 1) 2p.

The output sequence generated by the unknown parameter 8 when applied

with the impulse input is given by

"h0; 0] [p®
h(1; 9) H(8)G(8) +D(8)
h,(® =|h(2:0) | = | HEOFE@C® +HE@6(®) +D(®)

X

° .

o

M .
h(; 6) {ZHOF (®6(®}+D(®) (3.31)

- -

Let the identification criterion be



57

M
34© = Zolh (ks ©) - y (0 T  [h(ks 9) - y ()]
= [, @ - 3, ] 8, (® - %] (3.32)

Then

9,® = 1/2 37@ = [y@1'Th, ©® -1,] (3.33)
which is a p-component vector function, and
8© = (0@ 1Thy @]+ (@ 11, ® -3, (3.34)

which is a (pxp) matrix function of 8.

We note that

) =0
Q‘M@O) =0 >
and 9. (@) = [ (@)1 Thy(@)] (3.35)

Recalling that the Markov parameter matrix is defined by

D(9)
H(0)G(8)

M) = | H(®)F(8)G(8)

M-1
H@F  (8)6(9)
By performing row reduction on gM(g), its easily seen that

rank[M(8) ] = rank[ﬁM(Q)] for all €eQ

and rank[M'(®)]= rank[l}};(_g)] for all 8eQ. (3.36)
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Moreover, from the matrix theory we know that
T,
rank[h’(8)] = p if and only if rank[(h (&) (hy(€))]=p.
h®]=p y [(y, (8)) ™ (hyy
For brevity, let

£,© =h @ -1 (3.37)

and N (8) = [hy(®1'[hy@]. (3.38)

Our purpose is to find a region S@O,p) such that 90 is both least-
square identifiable and identifiable from the transfer function in S@O,p).
We first state the following Lemma.
Lemma 3.6

Let B and C be two (nXn) matrices. Let "°

be a norm on the space
of (nxn) matrices.
If (i) B is nomsingular,
@) |87 o,
(iii) Jlc-B|| 6, and

(iv) ad <1,

o
- b

-1
then C is nonsingular and HC =
Theorem 3.7

Let ¥ be a zero-state, single-input linear system parametrized by

the unknown parameter §. Let the true parameter be § Let HH be a

0.
norm on the respective spaces, If
(D NM(QO) is nonsingular,

(2) there exists an open sphere S@O,p) with a radius p>0 centered

at 90 and a set of positive numbers (A,y,u) such that
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. ~1
@ Iy €l
T
< o /"
(ii) ”["f‘M@)] _t:M@)” sy for all _G_eS@O,p),
(iii) ”N};@) H =) for all @eS @O,p),
(iv) )\(up'*"Y) <1,
then _(_90 is both least-square identifiable and identifiable from the
transfer functiom in S(_Q_O,p).

Proof: By 2(iii) we have
||NM(9) -NM@O)” Spp for all eS (8 ,p)

-1
Moreover, “NM @O)H <)\ by 2(i). Applying Lemma 3.6 to this situationm,

we have =%, § =pu, and App <1 by 2(iv). Thus NM@) is nonsingular and

-1 2
”NM OlE = o for all _QeS(QO,p)

Since NM(Q) = [_f_x}&(g) ]T[_I_xy'[@)] and Ny(6) has constant rank p in S(_Q_O,p),
therefore ﬁljl@) has constant rank p in S@O,p) and ﬁ@) has constant rank
p in S@O,p) , hence 90 is locally identifiable from the transfer function
by Theorem 3.3, We now show that J&@) is nonsingular for all 8eS @O,p)
and J}’{(_Q) is locally injective on S@O,p).

By (3.34),
0:® =8, @ +[5@1'f @,
therefore
’ c! Tx:
Iy, ® - g, @1 = £, ©® £ @]l sy

for all €GeS @O,p) by 2(ii). Applying Lemma 3.6 again, we have o = 7 )‘}\ s
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§=vy, and ab = MY <1, Thus ¢./(9) is nonsingular, i.e., ¢'(8) has

1-App M= M=
constant rank p for all QeS(QO,p). This implies that 90 is locally
lcast-square identifiable by Theorem 3.2,

A computation procedure for finding explicitly S(Qo,p) will be

presented in the next chapter.



61

4, REGIONS OF PARAMETER IDENTIFIABILITY FOR
DETERMINISTIC LINEAR DYNAMIC SYSTEMS

In this chapter we will study the identification algorithm exten-
sively. We will first study Pereyra's [13] theory on the modified Newton
method, which we shall call the Gauss-Newton method, for solving nonlinear
least square problems. Then we will present the identification algorithm
proposed by Herget [7] for finding the regions of parameter identifi-
ability.

4.1 Nonlinear Least-Square Problems and
the Gauss-Newton Method

In this section we will study the sufficient conditions for the con-
vergence of the Newton iteration sequence and the Gauss-Newton iteration
sequence.

Definition 4.1

°

defined on the R" space is called a

A real-valued function

norm if
(1) |xl20 for all xer",

(ii) |lx||=0 if and only if x=0,
(1) |x+ylf sl + |yl for all x,yer”, and

end 211 yer"

fo4 “ o e W

(i)Y |l
N~ i

Definition 4.2

A mapping ¢:Q(:Rp-'Rm is said to be Frechet-differentiable at 8,
where 6 is an interior point of (Q, if there is an (mx p) linear operator
A such that

Lim (L/|[&[D]l¥ @+ k) - ¥(8) - aK|[ =0
(R



62

for all k such that @+ke. A is denoted by §’(8) and is called the F-

derivative of { at O.
By a least square problem, we mean given a nonlinear transformation
p_m p m .
h:QCR - R between the set QCR" and the R* space (p<m in general),
and the sequence of observations _XeRm, find a parameter QOGQ such that
the Euclidean norm of h(8) -Y is minimized at _(_90, i.e., we want to find
the stationary points of the criterion ||_1r_1(§) -_Y_"z°
For brevity, let f(8) =h(8) -Y, "If £(8) is at least twice Frechet-

differentiable on 0, then we can differentiate the criterion to find the

minimal point of the criterion. Let
1@ =@ -11"Th(@ - 1] = £ ©£(©)
which is the square of the Euclidean norm of E(_O_) -Y. Then
2© = 1/2 3@ =[£'®1"£@® (4.1)

where £'(8) is an (mxp) matrix function of @ and ¢(8) is a p-component

vector function of 8.

To find the stationary points of J(8), we let
() =0 (4.2)

Many questions arise. (1) Does there exist some 9030 such that _Q(_QO) =07

(2) 1f -QO exists, is QO unique locally or globally? (3) If @ 1is unique

0

locally in some region, can we find explicitly the region? (4) If §0

exists, how do we construct an iteration sequence which will converge

?
to 90'



63

To answer these questions, we proceed as follows. The standard

Newton iteration sequence for solving the equation ¢(8) =0 is defined by

~

0 _G "[Q (__ )] _Q(_ )3 n= 031:"": (4-3)

“mtl o

where

0" (©) =[£'(® 71 £ @ +[£ (@7 £, (4.4)

and £'(6) is an mx px p bilinear operator defined by

32f, ; ()

£'(8
®) = [ae 5,

i
5 j
k

L,--
1,---,p (4.5)
L,===,p

The manipulation of the bilinear operator follows that given in Sec. 3.1,
The Newton-Kantorovich Theorem provides sufficient conditions for the

convergence of the iteration sequence (4.3) and the uniqueness of the

solution for (4.2) in a region.

Theorem 4.1 [Newton-Kantorovich] [12]

Assume that _;(Q:QCRP“Rp is F~differentiable on a convex set O, CQ

0
and that

llg" @) 'Ql@z)ll S\(H_Ql -_QZH for all gl,_gzenoo

Suppose that there exists an _Q_OGQO such that !l_@’(_QG)“ <8 and a=fyns1/2

where g’ @ )18 @) = 1.

Let

- y -
= B0 - 27, py= () T4 (- 207,

and assume that g@o,pl) CQO where §@O,p1) is the closure of the sphere
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S(Qo,pl) with radius 0 centered at go. Then the iteration sequence

~

'9n+l=-g'n-[9 (_Qn)] .Q@n)’ n=0,1, )

is well-defined, remains in'§(90,p1) and converges to a solution 90 of

¢(8) =0 which is unique in S(Qo,pz)ﬂQO° Moreover, the error estimate
n n
I8, - 8,1 s Bv2H "™, n=0,1,---,

holds.

By (4.4), we see that by using Newton's method, we must calculate
£”(8) which is a bilinear operator in each iteration. This is a compu-
tational inconvenience. Pereyra [13] developed a modified Newton method
which we shall call the Gauss-Newton method. The modification is that
Q'(Q) is replaced by its first order approximation [ﬁ'(@)]?g'(g) and the

modified iteration sequence is defined by

2
4

-1

o
2

32

r
|

Ol

A
)]
n

li
o}
oy
I

1

)

J
-~
£~
.
(o)
~

BN
). n
n

-~
]
-~

nt+1

It

&S
la>
[a

I
[

Due to the approximation on_@'(@), another set of sufficient conditions
for the convergence of (4.6) and the uniqueness of the solution of (4.2)
was established by Pereyra [13].
Theorem 4.2

Assume ¢:Q'*Rp is F-differentiable. For brevity, let N(8) =
[;’@)JT;(Q). Let §0€Q~ 1f

(L) N<§0) is nonsingular,

(2) there exists a sphere S(§0,p)<:Q of radius p centered at EO such

that
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@ vyl s/,

G | @©1'2@ - [£' @1 £@)|| v for a1l 65 @40,
@win) £ @1 £@ | <y

(iv) |IN'(®)|| sy for all ges@O,p>

(V) Mup+y) <1/2, ~
LT T el
(vi) n<p, where n = TﬁTEXTEEF:;S .

Then the iteration sequence defined by (4.6) converges to the unique

solution go of $(8) =0 in the sphere S(Qo,n)° Moreover, the error

estimate is given by

Hg() - -Qn” s knY’

where k=2\(up +v).

The above theorem provides a convergence region centered at the
initial iteration point such that the solution of (4.2) is unique in that
region, If we hawe the knowiedge of ihe soluviion of (4.2). then we are
able to find a region centered at the solution_QO such that 90 is the
unique solution of (4.2) in that region by modifying the above theorem.

This will be studied in the next section.

4.2 Regions of Parameter Identifiability
After introducing the theory and algorithm for solving the nonlinear
least-square problems, we are now going to apply it for the control system
parameter identification problem. We shall first introduce the &w-norm
which will be employed by the identification algorithm developed in this

section,
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The well-known class of norms on Rn space 1is the Lp-norm defined by
n 1/
P, L/p
= <p<
el (g =D, 1<p<a

When p=2, the Lz-norm is usually called the Euclidean norm.
The limiting case of the &p-norm is the {_-norm defined by
el = max x|
® 1sisn
We can thus now induce a norm on the space of linear operators from

R LI . n .
R to R . We denote this space by L(R =Rm). Given any two norms "ﬂ

I

respect to

and

’ on R" and R" respectively, and any AeL(Rn,Rm), the norm of A with

‘“ and

*||" is defined by
) ;
lall = ”ElsliplllAzll
Such a matrix norm satisfies the properties:
(i) ||al|20 for all aeL®",R™,
(ii) J|Al| =0 only if A=0,
(1i1) |lea = |o| ||A|| for all ceL®",RD),
(iv) ||a+B|| <|ja]|+ ||B|| for a1l A,BeL(R",R™).

The £1-, £ -, and 4 _-norms are the most useful in numerical analysis

2

worlk,  TFor the

1]

yetem identification problem concerned in thic section,

we will employ the { -norm. We demote the £ -norm of a matrix A by “A”w'

The following theorem provides the explicit expression of HA"oo [12].

Theorem 4.3

Let AeL(Rn,Rm) where both R™ and R™ are normed by the {_-norm.

Denote A=[a, . ].
i)
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Then

n v
“AHG)= Max jglla' l 4.7)
1 =

. ij
<1 <m ]

Proof: TFor any geRn,

lagl, = wax | o) |
1<i<n

n
= Max |,2 a__x.‘

s Max ‘ 1‘x l
lslsm-‘1

< Max Z la l ( Max |x |)
lsismd 1<j<n

n
= ( e oy [ag D], 4.8)

*
It sufficies to show that there exists an X ¢R"™ such that the equality
Yo

is attained in (4.8 Let k be ithe index such that

Max l = Z ‘
1SiSmJ l kJ
Defineiz* by
a /la | a . #0
X, = R ¢ j=1l,---,n
] 1 , 8, .=0

Then
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lax’] = wax |ax™. |
® 1<i<m 1

n kS
= Max l}ja,_x.

1sis<m j=1 13

If i#k, then

n ¥ n %
|j§13ijxj‘ = jzl‘aij| x5
< n‘ H M x?’s‘
TPy
n
= jgllaij!
n
= 21|akJ|
If i=k, then
%* n
‘jg aijj] j§1| k_']‘
. .. n ‘ n '
i MAae = (A (- aw - i an a ammality in Ry 1
TS AR i, T B iegi T M gEieg, e the equaliny dn (B R

attained.

We can also induce an 4 -~norm on an (mx p x p) bilinear operator B
0

defined by

We now consider the problem of identifying the vector of unknown
parameters 7, and the unknown initial state w(0) of a parametrized
deterministic system whose state at time k, is the vector, w(k), where

w (k)
k=0,1,2=~-. Let x(k) ;{I\ }, vhich we shall call the augmented state
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vector, and let x(k) be a p-componment vector. Then 8 = x(0) = l— is
to be identified. We assume that the true parameter _e_o is an interior
point of a known compact subset QCRp, and the system is stable for all
admissible inputs and 8e¢Q?. We note here that after the augmentationm,
the identification problem of the original system is equivalent to the
initial-state observation problem of the augmented system. We assume

that the function g(x,k) is known as a function of x and k and that
x(k+1) = g(x(K) k) 4.9)

We also assume that the inputs to the system are known implicitly
in g(x,k).
Furthermore, we assume that observations of the state can be written

in the form

y () = ¢cx(k) (4.10)

where C is a known (r Xxp) constant matrix.
Let

- -

y(0)

y(1L)
ZM = v (G.iD)

y .(M)

be the m-component vector of observations, where m= r(M+ 1) 2p., Let
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[ ¢x(0) |

Cx (1)
h (© = . (4.12)

LQ§2M).
where x(k) is the solution to (4.9) when x(0) =8. Moreover, let

jM(Q) = _h.M(_Q_) -y (4.13)
We assume that we have obtained a solution, say QO, such that

_ﬁM(_QO) =0 (4.14)

i.e., §0 is the parameter value which when applied with the input sequence
from a given set of input-output sequence will generate a set of output
data which will match the given output sequence. In order that _Qo is
identifiable, §0 must be an interior point of an open sphere S(_Qo,p) <0
wiili radius p >0 centered ai & such ihai _§0 1s ihe uilque 5OLULLIOL LO

the equation

£,0 =0 (4.15)

in S(@O,p),° We are now going to establish the sufficient conditions for

the existence of S@O,p). Let the identification criterion be

1, = [5,©®71 £, (4.16)

We see immediately that JM(_Q) =0 if and only if gM@) =0, Since I.(8) is

nonnegative for all 8, therefore its minimal value is zero. If we have
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the knowledge of §0, then JM(90)==§M(90)==0 and 90 is the minimal point of
JM(Q). Let
8, = 1/2 3@ =[£/@©1£,@, (4.17)
then
; _Tet T, u T
8@ =[5 @15 @ +[£©@1£,@© (4.18)
Let
N, © = L5 @T£@© (4.19)
Note that
QM(QO) =0, (4.20)
and
’ _re! T, -
240 = L5 @ E @) =X, (6 (4.21)

Thus if there exists an open sphere S(Qo,p) such that gé(@) is non-
singular for all Qes(go,p), then QH(Q) is locally injective on S(Qo,p)
and thus 90 is locally identifiable by Theorem 3.2. The following theorem,
established by Herget [7], provides sufficient conditions for the existence
of such S(Qo,p)°
Theorem 4.4

Let R® and R™ be the vector spaces of p and m~tuples respectively

over R, Let ”'” denotes any norm on the respective spaces. Let_fM(Q) be

an m-vector fumction of geRp which is twice F-differentiable on Q(:Rp°
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If (1) there is QOGQ such that _fM(QO) =0,
(2) NM@O) is nonsingular,
(3) there is a sphere S@O,p) with radius p >0 centered at 90 and a

set of positive numbers (A,y,un,m) such that

-1

@ [y, ©plIsn/2,

(ii) ||[;£’4(9)]§M@)”sy for all 6e5(8,p),
(iii) “Né(g) (& for all 9eS(8y,p),
(iv) |L@M@)||sn, for all 8e5(9,0)

(V) ansplé,

(vi) A (2up+y) £1/2,
then 90 is locally identifiab—1.e in-.S (8>p) . Moreover, for any §OeS (8gs0/2),
the iteration sequence

~

~ _1 ~ ) ~
-Q-n+1 - gn—NM @n)'@M@n)’ n=0,1,2,~--

converges to the unigque solution @0 of jM(Q) =0 in S(@O,p/Z).
Proof: We shall first prove that NM@) is nonsingular and ]]NM-l(_G_)H sA

for all ges@o,p). By 3(iii), we have

||NM@) -NM@O)“SM} for all _QeS(_@O,p)

[£%]

Applying Lemma 3.6 to this situation, we have o=i/2, § =pp and & -

. . -1 2
Aup/2<1/8. Therefore NM@) is nonsingular and ”NM (®) H s——l——)‘—)/\—":—— =
) - ABO
—_— 2
" (1-7\up)< A for all _QeS(QO,p).
A result due to Bartle in Herget [7] is: If |!er1@) 'Qﬁ@o)“ =B for
= - - / -~ -
all ges(_go,p), then |@M(§1) _@M@z) LMONICH 92)”sB|l-91 §2|| for all

gl,gzes@o,p), In our case, _@b;@o) =NM(_@O) by (4.21), Thus by 3(ii) and
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(iii)
7 7 7 T .|
e, @® - g @l =, @ -5 @) +[£ @TE, O
s pp for all QGS(_Q_O,p)

Therefore we have

2, ©, - 2,(8,) - 2,8 ©; - 8[| = Lo+ )8, - 8,

for all 8y,8,€S (_Qo,p) .

Also, look at

N ® -8, =N, © - My @y

Thus

Ny, (®) - 8/ @ N sup for all 8es(8,p)

Let 8 _€S(8,,p/2), and
U v

- ~ ~

gn»l-l =‘g‘n ) NM @n)¢M@n) » 1=0,1,2,-=-

We want to show that gnes @O,p/Z) for all n. We prove it by induction.

~ =~ _ -1~ ~
878Ny oy &y

Thus l[@l -§0|| A <p/4. Hence Qles@o,p/Z) and QleS @O,p)o Now assume
QVGS(QO,p/Z) for v=1,--~,n. Then we have

~ ~

- M@V-l) @\) —‘QV"].) =QM(_Q\)-1)
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Thus ¢ (0 ) =¢, @) - 9,6, )+8 @ )

(—) QM<-\)1 M@ _PE -8 D

) '@M@v) -QM@"\)-I) “%,&) @v -8

v-1

r\z
d;Z
o

+ 12/ @) -, _DIE -8 )
Therefore “QM@\))” S (up +Y)“9\) - 9 ”'*'MP“.Q -"\)- ” = k”_Qv'_Qv_l'l
where k=2pp+vyo

vow 8,8, <1l @)

which implies

18, -8, Il saefle,_, - 9\)-2“

1
e,

< (\k) ) -9

Look at

~ ~ lN ~
-

178 N €, )

Is,.,, - &l =2llg, @l

< (Mc)ug -en A

Therefore
”§n+1 - _9_n“ < (Ak) "”-91 - -90” *

Note that

-6 =% -9
L1207 o[—m -]
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Thus
B, -8)< L6, &
n v, ~
< 00 {8, - 8l

s B ow”|d -G

T 1- KdLl -‘l

1
=G5 4
1
ST e

which implies §n+1es(go,p/2), thus the induction proof is completed.

Next, we shall show that {9 }:—0 is a Cauchy sequence. Let m>n and
n° n=

m=n+ j, then
Thus

n+j-1 AV e d ~
< (A\k) |8, -8
vEn ‘LJ. —0”
= <xk>“[j'210~‘k>vl!15 -8,
v=0 -1 70
n [ee] ) ~ ~
Kk k 6 -9
< 0Tz 00"fe -8 |

k"
= 1~ \.1\ ”——]_ 20H
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s_.ﬂ_L (P.)
1-Ak

Q"
<1, @
n
= p
AR @)

~
Since Aks1/2, therefore lim (kk) (p) =0 and hence {gn}n_o is a Cauchy
n-ow -
sequence.
P ~
Since R is a complete normed space, fgn}nzo converges to some point
8,68 @O,p). We must show that §0=g1. On the contrary suppose _9_1 #80s
then we can write

= -1 -
80 8 =Ny Gy €y~ 8
-1
=N, @) ©)-8,6)-8,6)E -8

+ (N
M

CIB)
N

'—(T‘i!' LY

0 ..ZM\-Ov'\_O
i 8)= 9)= dN (8)= 0

since _@M(_O) ¢ML1) 0 an MQ‘O) _QM(_O)
Thus

\\90 -9 [ sty +upe - |

<1/2 lla -0 ll
11— 0 1][

which is a contradiction. Thus _9_0=91 and the proof is completed.
Remarks:
(n S(__Qo,p) is the region of parameter identifiability, i.e., 90 is

the unique solution for L"M(Q) =0 in S@_O,p), but the convergence
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of the Gauss-Newton iteration sequence is assured in S@O,p/Z).
This is an added feature. However, our primary interest is the
uniqueness of the solution of LEM(Q) =0 in some region in 2. We
have assumed we already know _90.

(2) 1If we are concerned about the uniqueness of the solution only,
then conditions 3(i), (ii), (iii) of Theorem 4.4 and A (up+vy) <2
suffice for the existence of S(_Qo,p). To prove this, we suppose
that there is a _QleS @O,p) such that fM@l) =0, then QM(Ql) =0.
Thus we can write

-1
8o~ 817Ny @M €;-8))

-1
=Ny G @8 -2 8 -2,6)E -8)
+ (NM@O) - _QI:I@O)) (QO - ,Ql))
Thus

le, -8, =r/2Gp+y)e -8, |

< fe,-8|
which is a contradiction. The region implied by these set of sufficient
conditions will generally be of larger radius since A(up+vy) <1/2 is more
conservative than A(up +vy) <2.
(3) Theorem 3.2 is implied by Theorem 4.4, To prove this, we first
recall that N (8) is nonsingular and HNM—l(Q)” <) for all
BeS (_Qo,p), and ‘@D:I@) =NM(§) + [_t:;l@) ]T_f_M(_Q). Therefore

%, ® -8, @] = lIL£; @75, @] =

M
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for all QeS(Qo,p). Apply Lemma 3.6 again, we have o=}, 8§ =y

and Ay s1/2<1, Thus ‘@I:I@) is nonsingular for all @S @O,p)

and QM(Q) is lccally injective on S(Qo,p).

We now derive a set of recursive formulas for computationally veri-

fying condition 3(1) to 3(vi) of Theorem 4.4 for the case of dynamic

systems.,

Recalling that

£,© =B,@ -,

Thus

[ cx(0)] [ y(0) ]
cx (1) (1)
C_}_:(M). ~X(M) ]

—Cx(O) W
Cglzio),o

-

C

cg’ (x(0),0)

y(0)

Lx(M)

i Cg'/(xM-1),M-1) --- g’ (x(0),0)

4.22)
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CT,(® 1
cI‘1 ®

| cT,© (4.23)

where T, (8) =g’ (-1, u=1) T, (&), k=1,--=,1 (4.24)

and TO(_Q) =1 = (pxp) identity matrix, (4.25)
PXP

oo ]
U

T (®)

EM@) = :

L T, (@) _ (4.26)

shere T'(®) =[g'@(k-D,k-D T @7 T, (©

1

+ g (x(k-1),k=-1) I‘li 1(9), k=1,---,M (4.27

and

/@ =0 (4.28)

To compute the bounds on the norms given in the hypothesis of Theorem 4.4,
we choose the £ -norm since the procedure is relatively straightforward
[es]

if we employ the interval arithmetic [117.

Let

~

A= {set of all finite closed intervals [a,b]:a,beR,a<b]}

The interval I=[a,a] is called a degenerate interval. The interval
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arithmetic operations are defined by
I%J = {x*y:xeIl,yed} for all I,Jesd (4.29)

where the symbol "*" indicates one of the arithmetic operations +,-,°,
and /, except that I/J is not defined if OelJ.

For example,

(a,b]+[c,d]=[a+c,b+d]
[a,b]°[c,d] =[min(ac,ad,bc,bd), max(ac,ad,bc,bd)]

{a,b]/[c,d]}=[a,b]°[1/d,1/c], provided O¢[c,d].

If the real number £ is to belong to the closed interval [gL,gR] on the

real numbers, gL:ng, we denote this interval by
(] = [gL,gR] for brevity.

If §(x) is a continuous, real-valued function of xeR, then the interval

function [§([x])] is defined by

W] = {y:y =& ,xe[x]}

An interval function will be called a ratiomal function if it is
defined and can be expressed as a rational interval arithmetic expression
in the interval variable and a finite set of constant coefficient intervals,
For simplicity, we shall assume that all of our functions of QeRp are
rational functions so that interval arithmetic suffices to evaluate their
norms. It is always true that the true interval function is a proper

subset of the computed interval, i.e.,
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U 4(x,x]) = [y([xD] ;ZI‘IJ(EX])

xe[ %]
where Iy([x]) is the computed interval obtained by replacing x by [x] and
evaluating { by interval arithmetic instead of ordinary arithmetic. The
following Theorem in [11] proves the above statement.

Theorem 4.5

Let I=[a,ble ,9 and
/\91= {Je,\g:JCI}

Let §={¢:¢ =,\91-'h9, ¥ is continuous on ,\91}, and d be a metric on § such
that (},d) is a complete metric space. For any rational function ye(y,d)
and arbitrary Je,gl,
U _§(x,xD ¢ TH )
xe[x] 7

Proof: From (4.29), it follows that if I,J,k,Le,&, Ick and JCL, then
I*JCk*L

provided in the case of division that 04L, This property of interval

arithmetic is called "monotonic inclusion'". Hence the result is obvious

from the monotonic inclusion property and the definition of the rational

interval function. Since a finite number of these operations is involved

and since for every xeJ [x,x]cJ, [x,x]e,\gl, then ¥ ([x,x])cI¢(I). To

prove that equality need not be attained, it suffices to give an example.
Let (%) =x2, J=[-1/2,1]

Then T(3) =J°={-1/2,1],
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but  [y([xD]=[0,1],
thus [-1/2,1] ¢ [0,1].
We can now apply the interval arithmetic to the evaluations of norms

required in Theorem 4.4,

The closed sphere §(§0,p) is the vector interval given by
EREECROERACINE n L8 7998, +P] (4.30)
i

which is the Cartesian product of closed intervals. We consider condition

3(iv) of Theorem 4.4 first. We wish to have a bound on

sup H,@_M@) = sw Max |¢M_(_Q)|,
8e5(8,),p) 85(9,,0) 15isp 1
Let
[¢Mi([§0])] = |:¢MLi([9{)]), ¢M ([90])],
then

sup 0)||= Max {Max[|¢ ([]),¢<e>1.
wlh = e Gl (DI, lay (8GDI7

The computation of I_@M([go]) is generally much easier than that of the

[_@M([_QO])], moreover, by Theorem 4.5,

su ®|l=s wu Max[ |1 ([g
9e8<§0,p>”5é“ = e Gial1g, QoD Iy, (8DIT)

(4.31)

Hence we will compute the right hand side of (4.31) as the bound of
the norm of
8.
ndit

For condition 3(ii} of Theorem 4.4, we iet
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" T_
A@=[a;; @)= [5,OTE® (4.32)

for brevity.

Then

sup  J|A(@)|| s Max [jElMax[llLaij([_G_O])‘, ‘IRaij([—eob 111

€S8 ,p) l=sisp
0 (4.33)
For condition 3(iii) of Theorem 4.4, we let
B(6) = [bijk@)] = lei@) (4.34)
where
’ — 7 T " T, . T
N(® =[£/(® T 5@ + ([£,®) ] £,(®) (4.35)
Then
sup ”B(g)“ = sup [ sup HB(Q)§“] (4.36)
8e8(9,5p) es(8,0) [E] =1

We note that ||g|| =1 if and only if §1_ =+] for some i=1,---,p. Hence
we introduce the following notation. For i,n=1,---,p, let
(] =[-1+1] if i#¢n
and [E.]. =[+1,+1]
173
For i=1,~=~,p and n=p+ 1,~-~-,2p, let
1 o=[-1,
i“n

(g.1 =[-1,-1] if i=n-p

=2

+17 if d
b17 if i

"t

n—

n3

Then we have

p p ,
sup  ||B®)||s  Max [ Max = rMax{|T.b. . (e D:lg, 11,
ges@o,p) l<si<p 1l<ns<2p =1 k=1 L ijk ™0 k-n

|15 51 08, 6, 111 (4.37)
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We summarize this algorithm by the flow graph in Fig. 1.
4.3 An Example of Computing the Region
of Parameter Identifiability
I1f a system is linear, time~invariant, and its parametrization is

known, then its augmented system has the quadratic-in-the-state bilinear

representation.

x(k+ 1) = [F+Dx (k) Jx (k) + [6+ Ex (k) Ju(k)
(k) =G0x(k) , (4.38)
il.e.,

g&,k) =[F+Dx]x+ [6+Ex]u(k), (4.39)

where u(k) is a q-vector, F is a (p xp) matrix, G is a (p X q) matrix, D
is a (pxp xp) bilinear operator, and E is a (p x ¢ xp) bilinear operator.
Then
% %
g8'x,k)=F+ (D+D )x+E u(k), (4.40)

and

£ (%K) =D+D" (4.41)

We now give an example to illustrate the algorithm of Theorem 4.4,

Consider the parametrized system which has already been given in Sec. 2.3.

;
v, (k+ 1) n, 1 wy () [ o
= + u(k)
w_(k+1)]| 0 n, | w_(k) n
2 2 2 3
I 1L Il
7, 9

vy =L 1 0 ] ll ‘| k=0,1,2,~-= (4,42)
] [}
L J
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The block diagram of this system is depicted in Fig. 2. We note that

by reversing the positions of

and -2;_., and by transforming the

2= M 2=y
initial conditions by a similarity transformation, the resulting equivalent
system will generate the same output sequence. The equivalent transfor-

mation matrix is given by

1 0

Hd
It

MMy 1

which has already been obtained in Sec. 2.3. The parameter §==[w1(0),
wz(O), Ny> Mgo n3]T is to be identified. Letting‘g(k)==[w1(k), wz(k),
N> Nyo n3]T, this system can be written in the quadratic-in-the-state

bilinear system form as given in (4.38) if we let

[ 01 000]
00 000
T=1 00 100
00 010
| 00 001
[ 0 ]
0
c=1] 0
0
o |,
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(00100 00000 00000 00000 0000 0.
00000 00010 00000 00000 000O0O
p={00000 00000 00000 00000 00000

00000 00000 00000 00000 000O0COC

00000 00000 00000 00000 0000 04’

and

{1000 0]

o
[

We have used the notation in [14] for representing the bilinear form
D, and E degenerated to an ordinary matrix since u(k) is a scalar.

Let §==[w1(0), w2(0), Ny»> Moo nBJT. It can be easily seen that
Q*: [wl 0), w2(0) + (n1+ nz)wl(o), Ngs Mys n3]T is a point in () which is
unresolvable from 8 by the equivalent transformation. Hence the solution
to the equation_jM(§)==0 is not unique in R5 and only local identifiability
can be imposed on the parameters of systems (4.42). We applied the
algorithm of Theorem 4.4 to this example with §O==[O.5, 0.1, 0.3, 0.7,
1.O]T. We note that §l==[0.5, -0.1, 0.7, 0.3, 1,0]T will give exactly the
same set of y(k) sequence for any input sequence v(k) and hence is
to 6

unresolvable from‘go. However, the distance from 8 is 0.4 by using

0 1

the 4_-norm. Therefore 90 and 21 are each locally identifiable in the
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spheres S(Qo,p) and S(Ql,p) respectively where p <0.4. By applying
Theorem 4.4 and the algorithm developed in the above section, we are able

to find two spheres centered at 90 and 8. respectively such that 90 and

1
91 are locally identifiable in those two spheres respectively. To
demonstrate this situation, we use an input sequence u(k) =100 sin (km/4),

for k=0,1,---, 19, we found that with twenty observation, the sphere

centered at QO is of radius p=0.21 and

A = 0.1314 x 1077

n = 0.3646 x 10’

v = 0.2284 x 10°

L= 02124 x 10
A = 0.0479 <0.0525 = /&

N(2pp+y) = 0.312<0.5 .

Thus the hypotheses of Theorem 4.4 are satisfied, and we conclude
that 90 is locally identifiable in S(QO, 0.21) and the Gauss-Newton
sequence will converge to QO starting from any point in the sphere
S(QO, 0.105) . We also tested the conditions of Theorem 4.4 about the

point gl and found that p=0.31. Hence 8. is locally identifiable in

1

2, 0.21) 2nd the Causs-Newton segquence will converge to 0. starting
i1l converge to g

1
from any point in the sphere S (8

Q
<

)

0,155) .
Since Theorem 4.4 gives sufficient conditions for convergence, and
because of the upper bounding implied by the use of interval amalysis, the

question of whether these results are overly conservative naturally arises.
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However, this example illustrates that the computed sphere of convergence

is of reasonable size in view of the distance from'go to gl, i.e., the

theoretical radius of the region of identifiability.

The computer program for testing the conditions in Theorem 4.4 for

the above specific example is listed in the Appendix.
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READ: pg» Aps 8g» Yo M> LIMIT

INITIALIZE: x(0) = 8,

T (@) BY B (4.24)

l

FOR k=1 TO M

COMPUTE : x(k) BY EQ. (4.11)

I‘k(go) BY EQ. (4.24)

\

COMPUTE f'@o) BY EQ (4.23)

[Y;:S\’ /{ Q_)SINGULAR?
MLO) R / -;\/N\O}

\ /) N

] \\\\\\\w///////’ g
31‘ STOP ;
v

Figure 1. Flow Graph for Computing Regions of Parameter Tdentifiability
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Figure 1.

90

l

-1
COMPUTE: =2, Tyl
LET: p =0
ITERATION = 1
INITIALIZE: 16, BY EQ. (4.30)
IT, BY EQ. (4.25)
11‘6 BY EQ. (4.28)
FOR k =1, ===, M
COMPUTE: I x(k) BY EQ. (4.9)
h 3 . (.
Ih B EQ. (.12
LE B . (4.13)
LT, BY EQ. (4.26)
1T BY EQ. (4.27)

Continued
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Figure 1. Continued

COMPUTE: 1 51:1 BY EQ. (4.23)
Ijl::[ BY EQ. (4.26)

I NIV’I BY EQ. (4.35)

Ig, BY EQ. (4.17)

1A BY EQ. (4.32)

I8 BY EQ. (4.34)

v RHS of EQ. (4.33)

w RHS of EQ. (4:37)

n RHS of EQ. (4.31)

\'4
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ITERATION = LIMIT

A

J mrratm. HIITIADT T MA TITAT DA \
WNOLL LWV L ALY v

E LW L P U
K STOP

LET: p=p-Ap

ITERATION = ITERATION + 1

W

GOTO@
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z-'T)Z

wz(k)

v, (k)

>

Figure 2.

z =1y

Rlock Diagram of System (4.42)

y (k)

£6
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5. LOCAL PARAMETER IDENTIFIABILITY AND
LOCAL CML PARAMETER IDENTIFIABILITY OF DYNAMIC
SYSTEMS WITH MEASUREMENT NOISE

In this chapter we will study the parameter identification problem
of general discrete-time, multiple-input/multiple-output dynamic systems
with measurement noise. Specifically, we will establish the concept of
local parameter identifiability and provide a computation procedure for
finding the explicit regions of parameter identifiability. Moreover, we
will show that the constrained maximum likelihood estimation sequence
converges to the locally identifiabile parameters with probability one.

5.1 Local Parameter Identifiability and Local
CML Parameter Identifiability

Let iﬁi}:=0 be a sequence of random vectors, which we shall call the

observations, with joint probability density function p(go,---t%n;g),

M=0,1,2,--~, parameterized by the unknown parameter _G_eQC:Rp° Rp is the

THET
AFE san vt el A Ak A Taer el ~An A 4
e e O Y A AR LA Ak WA LA TRNTE I -~

~ A
[V

[ ]

cpoce Q
compact subset of RP, We let Z =(z ,z ,---,z ), and we assume that the
M 01 M

true parameter 90 lies in the interior of Q. Furthermore, we assume that
p(gM;g) is continuous with respect to 8e¢Q for ZM almost everywhere, i.e.,
for ¢ >0 and 8¢, there exists a §(e) >0 such that for all g’eQ wittl.
H_e_-_@’“ <§ we have |p(ZM;_Q) - p(ZN;_Q')| <e¢ for ZM almost everywhere, -
Following Tse and Anton [19], we make the following definitionms.

Definition 5.1

Two parameters gl,gzeﬁ, 9 =¢§2, are said to be unresolvable if the

1
equality
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p(Z,:8)) =P ;L) (5.1)

holds with probability one with respect to §1 and §2 for all except a
finite number of integers mn>0, i.e., for all except a finite number of
integers n>0, (5.1) holds with respect to the measure p(§M391)dZM as
well : .

ell as p@M,Qz)d_Z_M

Definition 5.2

A parameter 6 €} is said to be locally identifiable if there exists
0
an open sphere S(go,p)c:Q with radius p >0 centered at 90 such that there

is no other €eS (_Q_O,p), Q#QO, which is unresolvable from _(_3_0.
The problem of constrained maximum likelihood (CML) estimation is
as follows: find §M€Q, an estimate of the true parameter 90’ where 6
is such that
p(zM;_éM) = 22(}; P(2,38), M=0,1,2,--- (5.2)

Since (3 is closed and
ZM almost everywhere, a solution to (5.2) exists., However, if 91 and §2
arc unresolvable in (), then they cannot be identified by the CML esti-
mation method constrained to (. Therefore the following definition is

established.

Definition 5.3

A parameter goaﬂ is said to be locally CML identifiable if there

exists an open sphere S(Qo,p) with radius p >0 centered at go such that

L A
the sequence LéM}Y~0 converges to 8y with probability ome, where {8 };—O
= M M=

18 constructed by
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A
PE8,)= < Max p(Z;6), M=0,1,2,--- (5.3)
M eeS (e up) &

g@o,p) denotes the closure of S(Qo,p). We will call S@O,p) given above
the region of parameter identifiability.

We now consider the problem of identifying the vector of unknown
parameters, 1, of a system whose state at time k is the vector w(k) where
k=0,1,2,---. Let x(k)= 29 and assume x(k) is a p-compoment vector
which we shall call the augmented state vector. Let the initial state
¥(0) also be unknown, then 8=x(0) = [E 0} is the parameter vector to be
identified. The identification probllzamj:lis'| then equivalent to the initial-

state observation problem of the augmented system. We assume that the

function g(x,k) is known as a function of x and k and that
x(k+1) = g(x(k) ,k) k=0,1,2,---, (5.4)

Observations of the state are taken which we will assume can be written

in the form

y(k) =Cx(k)

2(k) = y (k) + v(k) k=0,1,2,-==. (5.5)

where C is a known (r xp) matrix and v(k) is a Gaussian-white noise vector

. . . . 2
with r components which has zero mean and covariane matrix Q=¢°1 .
XY
2

g“ <o. The observation sequence of system (5.4) and (5.5) is

2,5 [2(0),z (1),---,2" )"

and the joint probability density function is given by
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p@M;_O_) = Const. 'exp[-% kiéo(g(k) - Cx (k) )TQ'l(g(k) - Cx(k))](5.6)

where x(k) is the solution to (5.4) when x(0) =9, and M=0,1,2,-~-.

We assume that the structure of g(x,k) is such that the following

assumptions hold.

(1) The inputs to the system are known implicitly in g(x,k).

(2) For every admissible input sequence and all @e(}, the states x(k)
and the deterministic part of the observations, w(k), generated
by @ when applied with the input sequence are bounded.

(3) g(,k) is at least twice continuously differentiable with

respect to 9, and hence so is p(_Z_M;_Q).

5.2 Regions of Parameter Identifiability
Let the assumptions given in Section 5,1 hold, and let us define

M
L, ® = 757 2200 - x (91209 - x(® ]

Tor M=0.1.7 ===, (

M

[ 7}
o

"~
o’

Then the CML estimation method in Eq. (2) is equivalent to finding

A
Min L (8) =L (8 ). M=0,1,2,---.
o M@ Gy

Following the notation in Chapter 4, we let

.Cl{ (0)1

h ® =) .

L(.]E ™) (5.8)

be the m-component vector wheve m=1v(M+1) 2p and x(k) is the solution to

equation (4) when x(0) =8.
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M
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We note that

5y @ =£ (O (5.16)
and

5, =£:(0). (5.17)
Let

“0) = ———[£/(6)] [ £/ (0 8

N © = Gl O] [£®)] (5.18)

By egs. (5.5), (5.11), (5.12), and (5.13),

.1 v 7 ;
Ly® = ——{£,® -9, {£,©) -]

or

o1 T 2 T 1 T
W® = gy OHO® -Gy 5@ TN T Ty Yy .19

Let us define

%
L (8) = lim E[LM@)]Q
M~ o

The following Theorem is a generalization of Aoki and Yue's Theorem given
in [1].
Theorem 5.1

Let the assumptions given in Section 5.1 hoid.

13
Then lim LM(9)==L (8) for all B¢} with probability one. Furthermore,

M=o

ooy o s L T 2
L7(9) = éng HqTI[EM(g)]_fM(g)i-rc . (5.20)

Proof, By assumption (2), hM(Q) has bounded elements for all 8e() and XM

has bounded elemenis. Hence j&(@)= hM(Q)-ZM has bounded elements for all
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£© ]
fzn@)

£ (9)
R

Then there exists a K<w such that ]fk@)\ <K for all €eQ and for all k.

Thus

1on 2
b];ll;m M+1[f (_)] (e)- lim gy k§1fk (©)

M- »
< 1gm THED 22
= M- M+ 1) °

Therefore the limit in (5.20) exists.

Consider the second term on the right hand side of (5.19).

v
\Y
2
vo= | -
v
L o
1 T 1 0
Then v 1[f_(9)] !_= -, ):1 f‘ @)V,I_.
vy M M T i k=1 k K

Since EVk= 0, EVk

situation, we have X, = fk(_Q)Vk, bM=M, and
2 2 2
; Exk ; f @)Evk S O—ZKZ ;_.l__ .
o
2 k12

k=1 k2 k

Let

=c;2 for all k, applying Lemma 2,l.2 to our

(5.21)
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Thus
- m 1 m
i . .
—_— X, = = £ (8)V. =0 with probability one. 5.22
Wil ek g e k@Y P Y .22)

Consider the third term on the right hand side of (5.19).

m 2
M+1 MM M+1k=1lk

2 2
Applying Lemma 2,1.b to this situation, we have xk=Vk . Elxll =EV1 =

(72 <o, Thus

m 2
L vy

2 . ‘o
M+l 121k - rs with probability one. (5.23)

By (5.21), (5.22), and (5.23), the theorem is proved.

If @ is the true parameter, then L*(_Q_O) =rc_r2 =min L*(Q_). The
following theorem provides sufficient conditions for the existence of a
sphere S@O,p) such that _G_O is the unique minimal point of J*(_Q) for all
8eS @O,p) . The form of the theorem was motivated by the work of
Pereyra [13].

We first recall that the &z—norm, or the Euclidean norm on the Rn
space is defined by

n 2% n
H3_c||2= (i§1|x1| ) , for all xeR .
Theorem 5.2

Let “"2 denotes the Euclidean norm. For brevity, let

L= =1 (®).
3 o me1 T M

T
Note that A A=NM@) which is an mX p matrix.
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1f (1) there is a _Q_OeQ such that _fM@o) =0 and hence

1
——— f f
lin = (90) £,6) =0,

M=

2) N 8) is nonsingular for all MeI+, and
M

(3) there is a sphere S(go,p) cQ with radius p >0 centered
at _9'0 and a set of positive numbers (A,y,u,K) such that
for all MeT'

W uNM'k o), =,

(ii) g ([A A] ) } SK for all 8eS(8 ,p).
] =" %9

. 1
(iii) "ﬁ'ﬁ[—fﬂM@)mz‘Y for all QGS@O,p),

*
(iv) IINM(_Q)HZSu for all eS(8,p), and
(V) AQup+y) <l.
Then (a) 90 is the unique point in S@O,p) such that £ @ ) =0 for all

MeI' and is the unique minimal point for lim w1 fu (_)_fu(_)

in S@O,p). I.e., 90 is the unique point in S(_O,p) such that
% %
L@ =r"=1 @)

)] ’QO is the unique minimal point for lim L (_) in S(__ »p) with
M-
probability one,

*
e lla oy - o vl ca
o Y | R o

Ry = M0 2
b3 %
for all _Qes@o,p), then HQM(_Ql) "_@M(Qz) -Q:;(_Q_ )(9 -0 )“ B|l§1-92 |2 for

(0) = £ (9) 1T
all _9_1.,’3265 ((_)O,p). In our particular case, QM(_) NM(_) +m[_._M(§)] EM@)
and Q“’(Q ) =N(_9_ )

Thus [[¢,(®) - 8@ 0 )ll, Supty for all Ges(8 ,p) by 3(iii) and (iv).

T e
O .

53

Therefore we have
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% * *
lo, @) -2,@)) -8,@0 @, -8 < Go+vle- 8,

for all 91 ,_QzeS @O,p) .

Now suppose there is another point _QleS @O,p), Ql#gz, such that

R T
lim M+1 _fM @1>£M(-Ql) =0,

M=o

. 1 2
lim H-\/.M_-i-_l ’EM@].)HZ =0.

M-

We can write
%=1 %*

SRR P CREFCRICI®
+ [N©) - ,6 1@ -8)
- 6,08)) +¢;@O)} for all MeT'.
We note that
g;;’(go) =N;(_§O) and 93@0) =0. Therefore
g~ 21, = Iy @ L@ - r@ ) @, -8 -grepl,
<l @l lag @) - 8- ghie) @, - 80
2
vy el e el
S Aoty o, -8 ll,+ Mg, @)l

~ SN ' +
<118, - &1l + Mgy, ) ||2 for all MeI .
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We now want to show that

Lim ll@ ©pll, -

M-

ot [, @)1 %<9, (91>g;<91>

' L, 2@ @) 1iE @)
M+ 1)

1

T ’ ' T
£, @LE@)IE@)TE @)

M+ 1) M

o el e | (7 4 eg,ep] -

The final inequality follows easily from Schwarz inequality and properties
)l

We now state a result given in [14 ]. If B is a p xp matrix,

of a nomm, i.e. |x x| 5|l Jlax],

p % 2 :
B=[b; ], then 8, = (T, F ;0%

Now look at

1 T
T lEL @I @)
4d v Y3 1 ™M L

[ lqu_lnt - @7

Aat

]

T
where [AA ]ij-kglaikajk'
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T m m P 2
Thus ||AA “25{151 j§1 (k};'laikajk) 3

m m P p %

={¢% ¥ ¥ La,a,a a_]}

i=1 j=1 k=1 g=1 ik 3 g jk

%

{151 le k§l &-—l kl Lj &1 k_]}

P P q 9 %
= L2 B GGt )

‘,%([AAJ >}

n
r“"i
|l Mo
—

i

-+
=K for all _Qes@o,p) and MeI by 3(ii).

Therefore

HgMal)Hz [ £, (_)f CRIE KHW—‘M(-)”

Lok w2
Thus lim HQM’\_QI){{Z =€, and wc con

M~ o
le, -5l <le, - &,

which is a contradiction, and so we conclude § =6 . This completes the

proof of part a.

To prove part (b), we see that
*
LM(Q) =1L (8) with probability one for all 6eQ

¥
and L (8) <o for all 9e by Theorem 5.1.
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Thus .
LM@O) - L (_90) with probability one.

1f _@#go, then L*(g) >L*(§O) » therefore there exists a 6@,_%) >0 such that
% ¥
L°(9) -L @O) >8>0

Since LM@) -'L*((_)) with probability one, there exists a MO(S) such that

lLM(Q) - L*(Q) | <6/2 with probability one

and
|LM(_QO) - L*@0)| <§/2 with probability one for all M>M0(6)
Thus
% %
| (LM(Q) - L c@)) + (LM@O) - Lr@o)) | <§ with probability one,
Now look at

%* * * o , Lx,
= {1, ®) -L @) +L ® - L @) - L6 -L ©))|

WY

'@ -1 @)+ @, ® -17@) - @) -1 @) |
>0 with probability one for all M>M,(8).

This completes the proof of part (b).

The above theorem gives explicit forms for the desired sphere S@O,p);
however, use of the Euclidean norm was needed in the proof of the theorem
rather than an arbitrary norm. It is usvally difficult to compute the

¢ Euclidean norm, and so we present in the
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following theorem a set of conditions in terms of a more general norm.

Again, let

) denote the Euclidean norm on the particular real vector

space under consideration. We will say that any other norm, ||*||, is sub-

5 if |L’_‘H§”§”2 for all x, We see that if we let _}geRp, and

ordinate to |

define

el = wex x|,
> 1lz2isp

then ||‘|] is subordinate to 'nzo This fact makes the computation of all
o]

the required bounds particularly simple if we use interval arithmetic [11].

Theorem 5.3

Let ””2 denotes the Euclidean norm, and let l|l*|| be any norm which is

subordinate to

If (1) there is a ger such that _f_M(_QO) =0 for all MeI" and hence
lin -t £T(@)f (8)=0
M=o M+l =u 0" TM 0 ’
%* . . +
(2) NNI@Q) is nonsingular for all Mel ,
(3) there is a sphere S@O,p) with radius p >0 centered at 8_
\v
and a set of positive numbers (A,v,u,B) such that for all

+
Mel

@ |yl <
. 1 7 T
(ii) [m[ﬁM@)] <8 for all @S @O,p)

(iii) 3[5?7“[£§(9>]?§M(9)||5Y for all 8eS(Q,p)

(iv) ”N;(_Q)“ <p  for all @eS @n,p)
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(V) Aup+y) <1

Then conclusions (a) and (b) of Theorem 5.2 are true,
Proof: As in the proof of Theorem 5.2, we suppose there is a,glesqgo,p),
Ql#go,suﬁldmt

lim Q_ﬁ ©e)=0

M__,OOM-i-l"M M™1

Hence,

=0

1im 1 _ £ (g3l
gl =171
M_,ca\/-l\{+1“‘M 1"

Since “'H is a subordinate to "°“2,

: 1 _
blqlqmm”/m 1 EM@I)“ o

Again we have
lo, - i<le,-2,ll+Hlp @)  for a1l mer”
Now look at
ey @Il = It L @ 175 @l
e EHCRI T g HCRY
S Bl 5,0l

14 *.e =0
Hence METm”QM(—l)“

Therefore we conclude that

e, -8 li<lle, - .l
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which is a contradiction, and so 6 =§0. Part b is the same as in Theorem

1
5.2, This concludes the proof of the theorem.
% %
Now let S@O,p) be a sphere such that 965@0,p) and L (9) =L<@0)
implies _Q=§0, e.g. as provided in Theorems 5.2 and 5.3. Now consider the

CML estimation problem: find éMeS @O,p) as an estimate of ‘QO where -éM

is constructed by
LM@;M) = Min L(®), M=0,1,2,--- (5.27)
ges @0’p)
g@o,p) denotes the closure of S(go,p).
A
To show that {‘QM}:I-O converges to _9_0 with probability one, we need
the foilowing Lemma,
Lemma 5.4 [Wald-Kendall-Astrém] [Aoki and Yue, 1]

A A
Let @M};;O be constructed by (5.2), then &M};Z:O converges to

_G_'CeQ*nQ with probability one, where ch is defined by

=L@ =17 @)

Theorem 5.5

A
Let S@O,p) be given by Theorems 5.2 or 5.3 and let {’G‘M};=0 be con-

@

Mg COmVErges

structed by (5.27). Then the CML estimation sequence {_éM}
to 90 with probability ome.

Proof: Since _QO is the unique € in S(@o,p) such that L*(Q) =L*(§0) ;
Q*DS@O,Q) = {_Qo} is a singleton.

Hence the result follows immediately from Lemma 5.4.
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Corollary 5.6

Let S(Qo,p) be the given in Theorem 5.2 or 5.3, then 90 is locally

CML identifiable.

5.3 An Example of Computing the Region of
Parameter Identifiability

We now give an example to illustrate the algorithm of Theorem 5.3.

Consider the system

P

wy (k1) mo 1 w, (k) 0 ©
= + u(k
lwz(kﬁ-l)J l 0 Ty J sz(k)J l n3j
Wy (k)
y = [ 1 0 ]
w, (K) (5.28)
z(k) = y(k + v(k) , k=0,1,2,---

v(k) is N(O,Gz), gz<mo

The block diagram of this system is depicted in Fig. 3. The deter-
ministic part of this system is the same as system (4.42) hence by
reversing the positions of ! and -1 , and by tra

Z=-mM Z2=M2
conditions by a similarity transformation, the resulting equivalent system

will generate the same y(k) sequence.
T
Let §==[w1(0), w2(0), > nz, n3] . Recalling from Sec. 4.3,
%
[ :=[y1(0), w2(0)4-(n1-n2)w1(0), Mys Ny n3] is a point in () which is
unresolvable from @ by the equivalent transformation. Hence the solution
to the equation jM(§)==0 is not unique in R5 and only local identifiability

can be imposed on the parameters of system (5.28)., We applied the
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algorithm of Theorem 5.3 to this example with _QO= (0.5, 0.1, 0.3, 0.7,
1.0)T. We ncte that _Ql= 0.5, -0.1, 0.7, 0.3, 1.0)T will give exactly
the same set of y(k) sequence for any input sequence u(k) and hence is
unresolvable from QO. However, the distance from §0 to 91 is 0.4 by

using the norm “'" . Therefore 6, and _Ql are each locally identifiable
©

0
in the spheres S@O,p) and S@l,p) respectively where p <0.4. Using an
input sequence u(k) =100 sin (krr/4) for k =0,1,---, the following data
listed in Table 1 are obtained.

We see that uniqueness is guaranteed in a sphere of radius p=0.33.
We know the true radius to be p=0.4 in this example. Again, this
example illustrates that the computed sphere of parameter identifiability
is of reasonable size in view of the distance from Ql to _QO. Moreover,
the region size obtained by applying Theorem 5.3 is larger than that
obtained by applying Theorem 4.4 since condition 3(wi) of Theorem 4.4 is

more conservative than condition 3(v) of Theorem 5.3.



Table 1. Region of parzmeter identifiability of system (5.28)
No, of
Observations b B v W o Alep+y)
20 0.1314 x 10—6 0.9682 x ].()4 0.6828 x 107 0.2126 x 106 0.285 0.905
40 0.1554 % 10-8 0.8936 x ].()5 0.5226 x 109 0.,8136 x 106 0.330 0.813
60 0.2139 % 10_9 0.2737 x 1()6 0.4047 x 1010 0.5418 x 106 0.330 €.866
30 0.2107 X 10_9 0.2882 x i.()6 0.2560 x 1010 0.1854 x 106 0.315 0.539
100 0.2263 x 10“8 0.1493 x '..06 0.4018 x ].09 0,.1046 x 106 0.295 0.909

11



v(k)

u (k) 1 Wy (k) .

— n

\y
1

Figure 3. 3lock Diagram of System (5.28)

AN
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6. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

Concepts of local identifiability and local CML identifiability
of parameters which parametrizes the joint probability density function of
the observation sequence are established. They are applicable to the
identification problem of control systems where there are stochastic
disturbances present. The local least-square identifiability and the
transfer-function identifiability of parameters of deterministic linear
dynamic systems are also introduced. Sufficient conditioms for their
identifiability are provided. It has been shown that for single-input,
zero-state linear systems, we are able to find a region containing the
true parameter as an interior point such that the true parameters are
both locally least-square identifiable and identifiable from the transfer
function in the same region under certain constant rank assumptions on

the impulse response matrix and the derivatives of the identification

] A A
[OP AR EEOP AN RON N

By modifying Glover and Willems' theorem in [67], a theorem ig given
to show that if a system is of minimal dimension, the system parameters
(inciuding the unknown initial state) are locally identifiable if it has
unique equivalent system locally when the system is restricted to a given
parametrization.

A brief survey on the theory of solving nonlinear least-square prob-
lems, &m~norm, and interval arithmetic is given. Employing these techniques,
a least-square type identification algorithm for finding explicitly the

regions of parameter identifiability of general linear deterministic



dynamic systems is developed. A numerical example is included to
illustrate this algorithm.

By modifying Herget's result [7], a theorem providing sufficient
conditions for local CML identifiability of parameters of general dynamic
systems with Gaussian-white measurement errors is established. A com-
putation procedure is provided by the theorem for finding the regions of
parameter identifiability. It has been shown that with probability one,
the true parameter vector is the unique extremal point of the maximum
likelihood function parametrized by the unknown parameter vector and the
constrained maximum likelihood estimation sequence is consistent in the
region of parameter identifiability. A numerical example is included to
illustrate this computation procedure.

The system parameter identification problem of Gauss-Markov stochastic
control systems driven by plant Gaussian-white noise and observed with
Gaussian-white noise is an an area of further endeavor,

It has been shown the parameter identification problem of linear
dynamic systems is equivalent to the initial-state observation problem of
the quadratic-in-the-state bilinear systems. Hence the observability
theory of quadratic-in-the-state bilinear systems needs to be studied
more extensively.

Since the sufficient conditions for parameter identifiability are
sensitive to the input sequence, further work in the area of optimal

input synthesis for system identification may prove frultful.
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9. APPENDIX

This Appendix contains a listing of the computer program used to
conduct the parameter identification example of the parameterized system
given in Sec. 4.3, 1t has been written in Fortran language using double
precision,

I1f actual input/output measurement data are available, "GENERATE
INPUT AND OUTPUT SEQUENCES" in this computer program should be removed.

Proper dimensioning of the matrix arrays should be noted.



ACNOANON

0oan

1490

11APL ICIT COMP._EX (A=GeP=Q) , REAL*8(X=Y)

DIMENSION XA(S 25 ) 1 XB{5+35:5 1+ (BSTA(S5:5+5)1+XE(S:5)eXC(1s5)e XX(S)
CXF (29200 XG(2) ) XCAMMI S5,5,8) e XGP (5,5 :5) + X{ 2) 4 XINFO(5+5) 4 Y(501)
CXFP({20 sS ) e XFPT (S 220 ) s HLA(S )9 A(S5:5)+B(5:5,:5)+yBSTAR(5,: 5, 5):C(1,5)»
CODP(S5:5:5) +G{ 3:¢5)sGAMMB(T45,5:21),W(100:11sFE(2+2)sGE(2)+FT(2,2),
CGT(2 )+ ETAE(2), ETAT(2),AX{5)s AYE(3D),AYT{30) ,GAMMA(S5,:5,21) ,DE(2)

DIMEANSION DT(2) s LC2E(2) +D2T(2)+GP (555421 ) s GAMM(595;5 5921 ):GGG(S5+555)
Cs GG{ SeS)sFPT( 20, S)eFPP(20:553) FPPT(5+15020),PHI(5) »H1{(5) ,PK(5),
CEPPTF(S +5) o AD(S5) sHDD(5) s ANP{3:535) s AA(S5:5:5)s AAT(E3S5:5)HPK(S) ,
CALEN(S 5} s HLEN(S15) s HC(2) sF{30) o XUL{30D) yGAMMMIS5,+5:5,21) »U(30),
CXD1(2)eXD2(2)oLL (S)sMM(S5),AAA(S:S)sFP(20,:5), ANORM(S,5,5)

HFIO4=70 85398=5--01

XEIDA=74985398D--01

NP =5

NE=2

NC=20

XEP =16 0D=30

XT=( 106 0D 00 )%k %2

T=(10o0E 00 ) 0%k2

XYZ=DFLOAT{NO)

Xv=3 ¢QD QO

A

COMPUTE LAMBODA

SPECIFY A MATRIX

DC 140 I=] NP

DO 140 JU=1NF

NA(Y ¢J)=0.0D 00
HA{1+2¥=120D 00
HYA(3 o3 V¥=Le00D 0O
XA(4 34)=%e0D CO
XA(S5s5)=1e0D DC

SPECIFY B8 AND BSTAR MATRICES



Nnoon

noON

00N

143

142

DC 121 I =1 ,,NP

DO 121 JU=1,NP

DO 12 K=1 NP
XB{IsJsK)I=0e0OD OC

XE{l 91 930¥=16e0D OO
XBl2s2+:4)=140D ©O

caO 122 1=31.MP

DO 122 J=1 NP

DO 122 K=1,NP

XBST A( 1, JeKI=XB(IsKy J)

SPECIFY E MATRIX
DC 141 I =1,NP

DO 141 J=1,.NP
XE{I:J)=000D 00
XE{2:5)=1e0D 00

SPECIFY C MATRIX

DO 142 1I=1 NP

XC(1 +1)=0¢0D 0O
XC(is1)=1a0®D €O

SPECIFY TRUE DATA

1¢1
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S 3DN3INDIIS

140NdiNG OGNV LNGENI JAVYE3INID

SNANI AiN3D

(> IXYVRK AT ere1)dON=(T ¢ *1)dOX
(OIXXR AN FSTIIVIASEXH (MMt 1)8X)+(Lr® 1)dOK= LT ¢ 1)dOX

diNe1=3 €21 04
00 QO0%0=(T¢f*1I)dOX
daik®i=r 821 04
an¢t=x 821 0Q

XIdLiVYW 3INDO SWIsd 9 Ad4I D3dS

ANNI LNOD

D0 dO°®I=({T1°F I JWRVOX

S 01 09

00 AO0°GCG=(T*C I )INNWYOX
QT QL 09 (v ®*03 °1) dJ1I
dN* i=f S 0Q

dN¢{i=1 S 0Q

X1HLVIW OX3Z VIWNWVO AdI 03dS

(T)¥X=(3)A
(2)oX={S)XX
(Z2¢2)aX=(HIxX
(34 TYIXN=L €I XX
(2 IX=(2)XX
CTYIX=( TIXX

G0 QI={<2)OX
00 QGO *0=(1)9OX
Q0 JLe0p=(2®*2rdX
C0 QLeC=(T*c)3xX
00 Jd0%i=({2* 1) 3X
00 Je°0=(1*1)3X
20 A1°0=(2)X

00 Qs®*0=(1)X

82%

€cy

Vuu

(S V)

vouw



0onon

00

201

124

%30
120

DO 120 K=2.NO

Ll=K=1

XULL1)=DSIN{ XPIQ4kDFLOAT(L] =1))*XT
CALL MATVEC(XF+X oeXD1seNSoNST

DO 201 I=1,NS

XD2( I)=XU(L1 )% XG{T)

CALL MATADD(XD1 o¢XD29XoNSs1
Y(K)=X(1)

XX({1)=x¢{1)

XX{(2ry=xXx{2)

GENERATE G PRIME MATRICES

DO 124 1=1,NP
DC 124 J=1.NP
XGP{I:JsK)=000D 00

DO 125 N=1,NP

XGP{ IsJo KIZEXGP (I 0JskKI+(XB(13JsN)+XBSTA(T s JsN) IRXX(N)
XKUCLL) =DSIN(XPIOA4AXDFLOAT(LY )

XGP{TeJoKISXGP(T aJoKIEXU(LI I RXE(I 2 J)XXT+XA(I »J)

CCNT INVUE

GENERATE GAMMA MATRICES

DO 130 I=1,NP

DC 130 J=1,NP

AGAMM(I o JsK)=0e0D 00

DO 130 N=1,NP

HGAMMIT 0 JoK) =X GANMM( I o JoK)+X GP(I s NeK=1 )X GAMM(N sJ yK=1)
CONT INUE

CCAT INUE

DO 170 I=1,NO

DO 170 J=1,.NP

XFP(I,J)=0o0D 0O

DO 170 N=1,NP
XEPCIsJ)=XFRII oI 4+XC(Y s NIXXGAMM(NeJs 1)

AN



OnO

170 CONTINUE
PRINT 85855

555 FORMAT{1HL »*"HE F PRIME MATRIX*//)
D0 666 1=1.NO

666 PRINT 270, (XFP{I:J),J=1-NP}

GENERATE INFORMATION MATRIX

CALL TRNSPZ( XFP, XFPT,NQO+NP)
CALL MATMLT (OFPT o XFPH» X INFOMPPy NO NP )
PRINT 480
480 FORMAT(IHIL*VHE N MATRIX®//!
DO 481 I =1 4NIP
4831 PRINT 27Cs (XINFO{(Isd)oJd=1,MP2)
DO 781 I=1,sNP
DO 781 JU=1,,NP
LINFOCO T JI=XINFO(TI,J)/7XW
781 CONTINUE
CALL MATINV(XINFOsNP,NP XEP ,DETER +£999)
PRINT 250
250 FORMAT(®* 0t ,* THE INFORMATION MATRIX®//)
DO 782 1=1,NP
DG 782 J=1 +NP
XINFO(I, JISXINFO{I,J)/XW
782 <CUTNT INUE
D0 260 I =1 NP
2580 PRINT 270, (XINFO(Ic.3)+U=1,182)
270 FORMAT(? * 45 +5D157)
DO 300 I=31,NP
HLA(TI)=0 o0
DC 300 J=1 NP
Z=XINFO( I, J)
HM=A8BS( 2)
HLA{ I)=HLA(I}+H
200 CONT INUE
HLAM=2,0 %AMAXT (HLA(L ) HLA(2),HLA(3 ), HLA(G) s HLA(S))
HLAM=XYZ *HL AM
PRINT 727, HI_LAM

VAl



C
~
‘\—

A XE)

2}

e N Ne}

nnn

737

20

16

15

17

FCRMAT (0" ,* LAMBLCA=® yE1Se7}

SPECIFY A MATRIX IN INTERVAL FORM

DO 208 I=1.NP

DC 22 J=1sNP

A(T o J) =CMPLX(DaC v0e0)
A{1,2)=CHPLX(1e0¢1e0)
A(3,3) =CMPLX ({10 v1el)
A(A, 4)=CMPLX(100+¢10 C)
A(S5+45)=CMPLX (1 e0C 1)

SPECIFY B AND BSTAR MATRICES IN INTERVAL <ORM

DO 16 I=1.-NP

DC 16 J=1.NP

DO 1& K=1,NP
S{I,JsK)I=CMPLX(0 ¢0s0Co0)
B(1+1:3)=CMPLX {(1e0+1:0)
B(2s 20 8)=CMPLX{(1e0s1le Q)
DC 15 1I=1,.NP

DO 15 JU=1.NP

DO 15 K=31.NP

BSTAR(I 9 JsK)=B(I +KoJ}
CONY INUE

YAl

SPECIFY G DOUBLE PRIME MATRIX

DO 17 I=1-NP

DO 17 JU=1,.NP

DC 17 K=1:NP

CALL INTADD(B(Is JeK) sBSTAR(TIoJsK)sCl)
CCP( IsJeK)=C1

SPECEIEFY E MATRIX IN INTERVAL FORM



O6n

X2 Ns!

19

99

747

DO 19 I=1.NP
DO 16 J=1+NP
G(Is J)=CHMPLX(0 ol +0eC)
G{2:5) =CMVPLX{] a0 o0}

SPECIFY C MATRIX IN INTERVAL FORM

DO 99 I=1NP
Cl1lo1) =CNPLX(060 9000
Cl303)=CMPLX(1005s%e0)

SPECIFY GAMMA O+ GAMMA |, GAMMAS

READ (S5,747) RHCLHDETA
FORMAT(2F10e ())
W(1,1)=0-0

W{221) =00

DO 6060 NN=3,3
RHO=RHO=HDET A
HINN 21 )=RHO

R1=06e5

R2=0el

FEC(L +1)=CMPLX(0e¢ 3=RHGC 0 ¢ 3+RID)
FE(L «2)=CMPLI( 160510 0)

FEC(2 1 )=CMPLX (D e300
FE(2¢2)=CMPL X( Q0 7-RHD s Qe 7+RHO)
SE (! )=CMPLX(( a0y Do)
GE(2)=CMPLX(1oe0-RHDOs1eC+RHO
ETAE(1l }=CMPLX(R1=~RHD,R1+RHO"
ETAE(2) =CMPLY ( R2 =RHO, R2 +RHO )
ET{L 21 )=CMPL X( Q0 29 0e 3)

FT{L +2)=CMPLXN{1e0,160)

FT{2:1 )=CMPLX( 0c 0+s00 )
FT(2+2)=CMPLX{0e 7900 7)

ST(]1 )=CMPLX( 000,y 000)
GT(2)=CMPLX(100s 100)

0o

AND GAMMA?

1 MATRICES

9¢1



ETAT (L ) =CMPLX(Rl ,R1)
ETAT(2)=CMPLX{R2 ,R2)
AX (1 )=ET AE(1)
AX(2)=ETAE(2)
AX(3)=FE(1,1)
AX(4)Y=FE(2 .2)
AX(S)=GE(2)
AYE(1)=ETAE(1)
AYT(1)=ETAT(1)
CALL IMTSUEGB(AYE(1),AYT{1),AC)
F(1) =AC
DO 210 1 =1,NP
DO 210 J=1,NP
IF {1Ie¢ EQse J)Y GO TO 211
GAMMA( L5 Jo 1 )=CMPLX(Ce0,0e0)
GO TOC 210
211 GAMMA{T0Js1)=CMPLX{(160,160)
210 CONT INUE
DO 6 1I=1 4N¥F
DO 6 J=1 NP
GAMMA( T0 Jes2)=CNPLX (060500
DO 8 L=I NP
CALL INTMUL(B(Is JoL)sAX(L )yCl)
CALL INTADD(GAMMA(Y +Js2) +C1 ,C2)
&€ GAMMA(Is Je2}=C2
DO 9 L=1,NP
CALL INTMULI(BSTAR(I.Jsl.) AX(L),C1)
CALL INTADD(GAMMA(IsJs2)+C1,C2)
O GAMMA(T,0Js2)=C2
CALL INTADD(A(I,J) ,GAMMA(TI ,J92),C1)
GAMMA(I, Jo2)=C1
C3=G{(I+J)%0e0
CALL INTADD(C3I-GAMMA(I,J.2),C2)
GAMMA( T Js2)=C2
& CONT INUE
DC 21 I=1.NP
DO 21 JU=1.NP
DO 21 K=1,NP

LT1



aoon

21

GAMMB( I+ JsKal) =CWVPLX (De05000)
GAMMP( IQJDKDZ) =GDP( I v J9K)

GENERATE H AND F MATRICES

DO 100 K=2,NO

Ll =K==l

U(LYI )=SIN(HPIOAXFLOAT(LLI=-1) 1%T
CC 1 I=1,sNS
DE(I)=CMPLX{0c05060)
DT(IDI=CHMPL X{Qe0y0oC]

DO 1 KK=1 +MNS

CALL INTMUL(FE(I +KKD) sETAE(KI) ,C1)
CALL INTMULIFT (I, KKIETAT(KK)I-C2)

CALL INTADD(DE(I) +C1 ,C3}
CALL INTADD(DT(I)yC2,C4}
DE{(1)=C3

DT(I 3=Ca

CONT INUE

DO 2 I=1 NS

D2E( IV=U(L1)*GE( 1)

D2TCI) =u(L1)*GT(1)

CONT INUE

DC 3 1I=1 NS

CALL INTADD(DE(I)D2E{¥),ClL)
CALL INTADDI(DT (I D)sD2T(I)sC:2)
ETAE(I ) =C}

ETAT(I)=C2

CONT INUE

AX(1)=ETAE(1)}

AX(2)=ETAFE(2)

AYE(K) =sCHPLX(0e0 +s0o0)

DO 301 I=1,NP

CALL INTMUL(C(1,»I)sAX(I)}sCl)
CALL INTADD(AYE(K) C1,C2)
AVE(K)=C2

8¢l



(g el e]

301

Gi
Q

CONT INUE

AX{1}=ETAT(1)

AX{2V=ET AT (2 )

AYT(K) =CMPLX(0e0 300 0)

DC 302 1I=1.NP

CALL INTMULI(C(C1 +I)sAX(I}WC1l)
CALL INTADD(AYT(K)!sC1,C2)
AYT(K) =C2

CONT INUE

CALL INTSUB(AYE(K)s AVT{(K)sCi}d
F{K) =C3i

GENERATE G®* ANC CAMMA MATRICES

DO 50 I=1+«NP

DO S0 J=1 NP

AX(1 )=ETAE(1)

AX{2 )=ET AE(2)}

GP(I s JsK+1 ) =CMPL X( Qo 0,060

DC Si L=1sNP

CALL INTMUL(BE{I »JeL) sAX{L)-C1)
CALL INTADOD(GP(I ¢JseK+1) Cl,22)
GF(Y s JsK+1 )=C2

DO 5& L=1.NP

CALL INTMUL{BSTAR(IsJsL )sAX({L)sCl)
CALL INTADD(GP({I ¢JsK+¥+1) ,C1l,C2)
GP({IoJsK+1)=C2

GG(I o J)=SIN(HPIOA4XFLOAT (L)) kG( 14U )T

CALL INTADD(GG(I sJ) o GP(Ladek #1)5C2)
GP{I s JoK+1)=C2

CALL INTADD(A( T+ J)}s GP(I+JsKF1)oC2)
GP{I sJoK+1)=(C2

CONT INUE

DC 11 1I=1,NP

DO 11 JU=1.NP

6C1
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11

29

22

23

GAMMA{ 14 Je K+1 }I=CMPLX(000+GCo)}

DO 11 L=1:NP

CALL INTMULIGP(I »L+K+1) .GAMIRA(L »JsK)»C1)
CALL INTADD(GAMMA(I, JoylK+1), 21,C2)
GAMMA(I, JoK+1)=C2

CCNT TNUE

GENERATE GAMMA PRIME MATRICIEES

DO 29 I=1sNP

DO 29 J=1,NP

DC 29 L=1,NP

GAMMA(TI 0 JsL o K-+1)=CMPL X(0a Qs Co 0)

DC 29 M=1,NP

CALL INTMUL(GDP(I:JsM) sGAMMA(MoL oK),y Cl)
CALL INTADD(GAMM{Ies JdorlLoK+12.21,C2)
GAMM(I 2 J oL +K+1)=C2

CONTYT INUE

DC 22 I=1,NP

D0 22 J=1 +NP

DO 22 LL=1sNP

GAMM(TI s JoLoK+1)=CAMM(I sl ¢ Joti+1 )

DO 232 I=1I,.NP

PC 23 J=1,NP

DO 23 L=1,:NP

GAMMM( JToJel+K+1)=CMPLX{ D00, 000

DO 23 M=1 ,NP

CALL INTMULC(GAMM(IoJoMiK+1) GAMMA(M,L 4K) 4C1%)
CALL INTADOD(GAMMN(IsJelL K+ 0 Cl,C2)
GAMMM( I o JslL sK+1)=C2

CCNT INUE

DO 24 I=41sNP

DO 24 J=1:NP

DL 2& L=1 NP

GGG I:J-sL)=CMPLX (D0 0,00 0)

00 25 M=1,NP

O£l
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25

24
i¢0

30

33

CALL INTMUL(GP(I cMyK<+1) sGAMMP (M, JoLsK)sC1l)
CALL INTADD(GGG( I,.J,L)»Cl1,C2)

GGG{(TI+JelL)=C2

CALL INTADD(GAMMM(I s JsL oK4+1 ) .GGG (I sJsl.)C1l)
GAMMP(I,JsleK¢+1)=C}

CONTENUE

CONT INUE

GENERATE F PRIME AND F DCUBILE PRIME MATRICES

BC 30 I=1.,NO

DO 30 J=1.NP

FP(I J)I=CMFLX(Ce0:+Cs0)

DO 30 L=1.NP

CALL INTMUL(C(1,L)ysGAMMA(L ,J»I),C1)

CALL INTADD(FP(IJd)sCil,C2)
FP(I -J)=C2

Do 3! 1=1.NO

O 31 J=1,.NP

DO 31 L=14NP

FPP( I,Js LI=CMPLX(Q00,000C)

DO 31 M=1 ,NP

CALL INTMUL(C{1sM™) sGAMMP(M, JoL+I),Cl)
CALL INT ADD(FPP( 150511, C1,C2)
FPP(I,JslL)=C2

CONT INUE

DO 32 I=1oNP

DO 32 J=1:NP

DT 32 L=1.,NO

FPPT(I sJsL)=FPP(LsI,sJ)

DO 33 I=1:+NP

DO 33 J=1.NO

FPT(Es J)=FP(Js 1)

CCMPUTE K

1€T



OO0

e}

36

35

738

DO 498 I=1 +NP

PK{I )=CMPL X{ {i1g Oy Oc O

DC 499 J=1,,NUO

CALL INTABS(FPT(I-J) oCl)
CALL INTADD(C1,.,PK(I) C2)
PK (I )Y=C2

PZ=PK(1)

HPK( II=AIMAG{PZ)
HQ=AMAX]1 (HPK(1 ), HPK(2) s HPK(Z ) HPK (4 ) » HPK(5) )
HQ=HQ/DSQRT( XY Z)

FRINT 501 .HQ
FORMAT(?9Q',%k=*,E15e 7)

CCMPUTE ETA

DO 35 I=1sNP

PHI(I) =CMPLX(Qo0 40e0)

20 3€ J=1,NO

CALL INTMULC(FPT(I+4)2F(J)sCl)
CALL INTADD(PHI( I) ,Cl,C2)
PHICII=C2

CALL INTABS(PHI(I),C3)
PHI(I}=C3

AZ=PHI(T)

HI(T)I=AIMAG(AZ)
FETA=AMAXTI(HI(C1) oHI(2) HI(3! ,H1I(4),H1(5))
HETA =HET A/XY Z

PRINT 738,HETA

FORMAT ("Q9 3 *IETA=9,E15¢7 )

COMPUTE GAMMA

DO 37 I=1sNP

DA 37 JU=1sNP

FPPTF{I, J)=CVMPLX (0De0 4060

DO 37 L=1,N0

CALL INTMUL(SPPT (IsJslL)sF(L )sC1l)

43!



60

CALL INTADD(FPPTF(IcsJ)sCisC2)
FPPTF{1l,J)=C2

CONT INUE

CO 38 I=1 +NP

AD(I)=CMPLX( Qs 0, Co 0}

CC 39 JU=1sNP

CALL INTABS(FPPTF(I,)sCl)
CALL INTADD{C1.AD(I).C2)
AED(1)=C2

AZ=AD{1)

HDD{ I}=AIMAG(AZ)

HGA=AMAX 1 (HDD(1) +HDD(2) + HDD(Z )y HOD(4 ) o HOD(S5 ) )
HGA=HGA/ XYZ

PRINT 739, HGA

FORMAT("0? ,*GAMMA=" ,£15e 7)

CCMPUTE &2

£el

DO 60 I=1:NP

DO 60 J=1,NP

DO 60 N=L,NP

ANP( I, Js N)=CMPLX (00 +s0a0)

DC &6C L=1:NP

CALL INTMUL(FPT(IsL)FPP{L+JsN)»C1)
CALL INTADDIANP(I:JsMN)oCi,C2)
ENP{I,JsNI=C2Z

CCNT INUE

DC 61 I=1,NP

D0 51 J=1,NP

DO 61 N=1 . NP

FACT 9 JsNI=CMFLX(CeO 50 ()

DC 61 L=1.NP

CALL INTMUL(FPPT (IsJ4L) oFP(L«N),Cl1)
CALL INTADD(AA(TI «JoN),C1,C2)
AA(Y o JeNYI=C2
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73
72

71

75
74
77

CONTINUE

DO 62 I=1sNP

DO 62 J=1,NP

DO 62 N=1,NP

AATO ToJaN)=AA(Ns I5J)
DO 63 1I=1sNP

DO 63 J4=1,NP

DO 63 N=1,NP

CALL INTADD(ANP( IsJoN)osAAT(IsJsN)IsCl}

ANP( T 90 N)=CY

CONT INUE

DC 70 N=1,2

IF fNe EQe 2) GO TO 7%
DO 72 I=1,NP

DO 72 J=1 NP

IF (1o EQe J) GO TO 73
AAA( X9 V) =CMHMPLX(=10o1e)
GO TO 72

AAA( I, y)=CMPLX(1060s1e01})
CONY INUE

GG YO 77

CC 74 I={.NP

DO 74 JU=31sNP

IF (Ie EQe J) GO TO 75

ARA( 1o JY=CMPLX(=1e0:1ef))

GG TO 74

AAA( Iy JY=CMPLX(=160:s=10 0)
CONT INVE

DO 78 L.=1.NP

DC 78 I=1sNP

DO 78 JU=1 .NP

ANORM( 14 Jo L I=CMPLX(CeDyv 00 0)
DO 78 K= NP

CALL INTMULCANP(IsJ.K) AAA(LsK)>»Cl)

CALL INT ADD(ANORM(IcJsl.)eC1,C2)
ANORM{I ¢ Jo L) =C2

el



2N Ns}

78 CONT INUE

DC 79 L=1.,ND

DO 76 I=1NP

ALEN(ISL }=CMPLX( 000y 0090)

DO 80 J=1,NP

CALL INTABS(ANORM(IJsL 1,+C1)

CALL INT ADD{ALEN(I-L ):Cl,C2)

ALEN(TI ,L )=C2

80 CONT INUE
79 HLEN(I dL)=ATIMAG{ ALEN(I,L})

HIZENY=AMAXI(HLEN(Y2 1 oHLENCT 02 ) o HLEN(1 23 ) o HLEN({E +4) sHLEN(2+1 ), HLEN
C(2+2 Vs HLEN(2s3 )y HLEN(2: 4 I3 HLEN( 391 )s HLEN{ 3+ 2) s HLEN( 39 3)sHLEN(354) 5
CHILEN {491 ) yHLEN(S +2) +HILEN(Q 33 sHLEN(4 +4))

HOINDISAMAXT(HK (N o HLENE 1+ S)Y o HILEN(2+5) s HLEN( 3+ 5) sHLEN( & ,5) sHLEN{S 1
C)oHLEN(S 32) o HI_EN(S:3) yHLEN(5. 8 ), HLEN(5:5 )}

790 CONT INUE

HKZ2=AMAXI (HK(l }s £K{(2})

HK2=HK 2/ XY¥Z

PRINT 740, HK2

740 FOCRMAT (P 0® 59 K2=2 4E1 507)

SPECIFY THE STOPFING CRITERION

HL=HLAM*FHETA
HBO=HLAM% (2, 0% HK2%RHC+HGA)

RHOA=RHD /4,0

IF (Hl_Le GTo RHDO4 ) GO TO 608

IF (HBDOoe GTe 0s5) GO TO 506

IF (W{NNolle EQe W{(NN=2,1)) GO TO 400
RHO=RHO+ 20 0%XHDETA

GeT



£08
602
&0S
506
601
€00
400

500
S99

MIC=NN=2

FRINT 602, MK
FORMAT(* 0 ,7 I=",1I3)
PRINT 605, HL

FORMAT (

*0°% " LAMBLCAXETA="® ,El5e7)

PRINT 6086, HBO
FORMAT €°0°? "L AMBCA( 200 XK2*IHO+GAMMA) =", E1S5, 7)

PRINT 601,RHO

FORMAT (

10, "RHO= s E1S¢ 7))

CCNTINUE
PRINT SO0, RHO

FORMAT
svop
END

(90° ,° THE CONVERGENCE SPHERE ODIAKMETER,

RHO='3E1 S0 7)

9¢1
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